231 research outputs found

    Reducing redundancy of real time computer graphics in mobile systems

    Get PDF
    The goal of this thesis is to propose novel and effective techniques to eliminate redundant computations that waste energy and are performed in real-time computer graphics applications, with special focus on mobile GPU micro-architecture. Improving the energy-efficiency of CPU/GPU systems is not only key to enlarge their battery life, but also allows to increase their performance because, to avoid overheating above thermal limits, SoCs tend to be throttled when the load is high for a large period of time. Prior studies pointed out that the CPU and especially the GPU are the principal energy consumers in the graphics subsystem, being the off-chip main memory accesses and the processors inside the GPU the primary energy consumers of the graphics subsystem. First, we focus on reducing redundant fragment processing computations by means of improving the culling of hidden surfaces. During real-time graphics rendering, objects are processed by the GPU in the order they are submitted by the CPU, and occluded surfaces are often processed even though they will end up not being part of the final image. When the GPU realizes that an object or part of it is not going to be visible, all activity required to compute its color and store it has already been performed. We propose a novel architectural technique for mobile GPUs, Visibility Rendering Order (VRO), which reorders objects front-to-back entirely in hardware to maximize the culling effectiveness of the GPU and minimize overshading, hence reducing execution time and energy consumption. VRO exploits the fact that the objects in graphics animated applications tend to keep its relative depth order across consecutive frames (temporal coherence) to provide the feeling of smooth transition. VRO keeps visibility information of a frame, and uses it to reorder the objects of the following frame. VRO just requires adding a small hardware to capture the visibility information and use it later to guide the rendering of the following frame. Moreover, VRO works in parallel with the graphics pipeline, so negligible performance overheads are incurred. We illustrate the benefits of VRO using various unmodified commercial 3D applications for which VRO achieves 27% speed-up and 14.8% energy reduction on average. Then, we focus on avoiding redundant computations related to CPU Collision Detection (CD). Graphics applications such as 3D games represent a large percentage of downloaded applications for mobile devices and the trend is towards more complex and realistic scenes with accurate 3D physics simulations. CD is one of the most important algorithms in any physics kernel since it identifies the contact points between the objects of a scene and determines when they collide. However, real-time accurate CD is very expensive in terms of energy consumption. We propose Render Based Collision Detection (RBCD), a novel energy-efficient high-fidelity CD scheme that leverages some intermediate results of the rendering pipeline to perform CD, so that redundant tasks are done just once. Comparing RBCD with a conventional CD completely executed in the CPU, we show that its execution time is reduced by almost three orders of magnitude (600x speedup), because most of the CD task of our model comes for free by reusing the image rendering intermediate results. Although not necessarily, such a dramatic time improvement may result in better frames per second if physics simulation stays in the critical path. However, the most important advantage of our technique is the enormous energy savings that result from eliminating a long and costly CPU computation and converting it into a few simple operations executed by a specialized hardware within the GPU. Our results show that the energy consumed by CD is reduced on average by a factor of 448x (i.e., by 99.8\%). These dramatic benefits are accompanied by a higher fidelity CD analysis (i.e., with finer granularity), which improves the quality and realism of the application.El objetivo de esta tesis es proponer técnicas efectivas y originales para eliminar computaciones inútiles que aparecen en aplicaciones gráficas, con especial énfasis en micro-arquitectura de GPUs. Mejorar la eficiencia energética de los sistemas CPU/GPU no es solo clave para alargar la vida de la batería, sino también incrementar su rendimiento. Estudios previos han apuntado que la CPU y especialmente la GPU son los principales consumidores de energía en el sub-sistema gráfico, siendo los accesos a memoria off-chip y los procesadores dentro de la GPU los principales consumidores de energía del sub-sistema gráfico. Primero, nos hemos centrado en reducir computaciones redundantes de la fase de fragment processing mediante la mejora en la eliminación de superficies ocultas. Durante el renderizado de gráficos en tiempo real, los objetos son procesados por la GPU en el orden en el que son enviados por la CPU, y las superficies ocultas son a menudo procesadas incluso si no no acaban formando parte de la imagen final. Cuando la GPU averigua que el objeto o parte de él no es visible, toda la actividad requerida para computar su color y guardarlo ha sido realizada. Proponemos una técnica arquitectónica original para GPUs móviles, Visibility Rendering Order (VRO), la cual reordena los objetos de delante hacia atrás por completo en hardware para maximizar la efectividad del culling de la GPU y así minimizar el overshading, y por lo tanto reducir el tiempo de ejecución y el consumo de energía. VRO explota el hecho de que los objetos de las aplicaciones gráficas animadas tienden a mantener su orden relativo en profundidad a través de frames consecutivos (coherencia temporal) para proveer animaciones con transiciones suaves. Dado que las relaciones de orden en profundidad entre objetos son testeadas en la GPU, VRO introduce costes mínimos en energía. Solo requiere añadir una pequeña unidad hardware para capturar la información de visibilidad. Además, VRO trabaja en paralelo con el pipeline gráfico, por lo que introduce costes insignificantes en tiempo. Ilustramos los beneficios de VRO usango varias aplicaciones 3D comerciales para las cuales VRO consigue un 27% de speed-up y un 14.8% de reducción de energía en media. En segundo lugar, evitamos computaciones redundantes relacionadas con la Detección de Colisiones (CD) en la CPU. Las aplicaciones gráficas animadas como los juegos 3D representan un alto porcentaje de las aplicaciones descargadas en dispositivos móviles y la tendencia es hacia escenas más complejas y realistas con simulaciones físicas 3D precisas. La CD es uno de los algoritmos más importantes entre los kernel de físicas dado que identifica los puntos de contacto entre los objetos de una escena. Sin embargo, una CD en tiempo real y precisa es muy costosa en términos de consumo energético. Proponemos Render Based Collision Detection (RBCD), una técnica energéticamente eficiente y preciso de CD que utiliza resultados intermedios del rendering pipeline para realizar la CD. Comparando RBCD con una CD convencional completamente ejecutada en la CPU, mostramos que el tiempo de ejecución es reducido casi tres órdenes de magnitud (600x speedup), porque la mayoría de la CD de nuestro modelo reusa resultados intermedios del renderizado de la imagen. Aunque no es así necesariamente, esta espectacular en tiempo puede resultar en mejores frames por segundo si la simulación de físicas está en el camino crítico. Sin embargo, la ventaja más importante de nuestra técnica es el enorme ahorro de energía que resulta de eliminar las largas y costosas computaciones en la CPU, sustituyéndolas por unas pocas operaciones ejecutadas en un hardware especializado dentro de la GPU. Nuestros resultados muestran que la energía consumida por la CD es reducidad en media por un factor de 448x. Estos dramáticos beneficios vienen acompañados de una mayor fidelidad en la CD (i.e. con granularidad más fina)Postprint (published version

    Visibility rendering order: Improving energy efficiency on mobile GPUs through frame coherence

    Get PDF
    During real-time graphics rendering, objects are processed by the GPU in the order they are submitted by the CPU, and occluded surfaces are often processed even though they will end up not being part of the final image, thus wasting precious time and energy. To help discard occluded surfaces, most current GPUs include an Early-Depth test before the fragment processing stage. However, to be effective it requires that opaque objects are processed in a front-to-back order. Depth sorting and other occlusion culling techniques at the object level incur overheads that are only offset for applications having substantial depth and/or fragment shading complexity, which is often not the case in mobile workloads. We propose a novel architectural technique for mobile GPUs, Visibility Rendering Order (VRO), which reorders objects front-to-back entirely in hardware by exploiting the fact that the objects in graphics animated applications tend to keep its relative depth order across consecutive frames (temporal coherence). Since order relationships are already tested by the Depth Test, VRO incurs minimal energy overheads because it just requires adding a small hardware to capture that information and use it later to guide the rendering of the following frame. Moreover, unlike other approaches, this unit works in parallel with the graphics pipeline without any performance overhead. We illustrate the benefits of VRO using various unmodified commercial 3D applications for which VRO achieves 27% speed-up and 14.8% energy reduction on average over a state-of-the-art mobile GPU.Peer ReviewedPostprint (author's final draft

    Accelerating Radio Wave Propagation Algorithms by Implementation on Graphics Hardware

    Get PDF
    Radio wave propagation prediction is a fundamental prerequisite for planning, analysis and optimization of radio networks. For instance coverage analysis, interference estimation or channel and power allocation all rely on propagation predictions. In wireless communication networks optimal antenna sites are determined by either conducting a serie

    Hardware-accelerated interactive data visualization for neuroscience in Python.

    Get PDF
    Large datasets are becoming more and more common in science, particularly in neuroscience where experimental techniques are rapidly evolving. Obtaining interpretable results from raw data can sometimes be done automatically; however, there are numerous situations where there is a need, at all processing stages, to visualize the data in an interactive way. This enables the scientist to gain intuition, discover unexpected patterns, and find guidance about subsequent analysis steps. Existing visualization tools mostly focus on static publication-quality figures and do not support interactive visualization of large datasets. While working on Python software for visualization of neurophysiological data, we developed techniques to leverage the computational power of modern graphics cards for high-performance interactive data visualization. We were able to achieve very high performance despite the interpreted and dynamic nature of Python, by using state-of-the-art, fast libraries such as NumPy, PyOpenGL, and PyTables. We present applications of these methods to visualization of neurophysiological data. We believe our tools will be useful in a broad range of domains, in neuroscience and beyond, where there is an increasing need for scalable and fast interactive visualization

    Dynamic task scheduling and binding for many-core systems through stream rewriting

    Get PDF
    This thesis proposes a novel model of computation, called stream rewriting, for the specification and implementation of highly concurrent applications. Basically, the active tasks of an application and their dependencies are encoded as a token stream, which is iteratively modified by a set of rewriting rules at runtime. In order to estimate the performance and scalability of stream rewriting, a large number of experiments have been evaluated on many-core systems and the task management has been implemented in software and hardware.In dieser Dissertation wurde Stream Rewriting als eine neue Methode entwickelt, um Anwendungen mit einer großen Anzahl von dynamischen Tasks zu beschreiben und effizient zur Laufzeit verwalten zu können. Dabei werden die aktiven Tasks in einem Datenstrom verpackt, der zur Laufzeit durch wiederholtes Suchen und Ersetzen umgeschrieben wird. Um die Performance und Skalierbarkeit zu bestimmen, wurde eine Vielzahl von Experimenten mit Many-Core-Systemen durchgeführt und die Verwaltung von Tasks über Stream Rewriting in Software und Hardware implementiert

    Doctor of Philosophy in Computer Science

    Get PDF
    dissertationRay tracing is becoming more widely adopted in offline rendering systems due to its natural support for high quality lighting. Since quality is also a concern in most real time systems, we believe ray tracing would be a welcome change in the real time world, but is avoided due to insufficient performance. Since power consumption is one of the primary factors limiting the increase of processor performance, it must be addressed as a foremost concern in any future ray tracing system designs. This will require cooperating advances in both algorithms and architecture. In this dissertation I study ray tracing system designs from a data movement perspective, targeting the various memory resources that are the primary consumer of power on a modern processor. The result is high performance, low energy ray tracing architectures

    Grand Pwning Unit:Accelerating Microarchitectural Attacks with the GPU

    Get PDF
    Dark silicon is pushing processor vendors to add more specialized units such as accelerators to commodity processor chips. Unfortunately this is done without enough care to security. In this paper we look at the security implications of integrated Graphical Processor Units (GPUs) found in almost all mobile processors. We demonstrate that GPUs, already widely employed to accelerate a variety of benign applications such as image rendering, can also be used to 'accelerate' microarchitectural attacks (i.e., making them more effective) on commodity platforms. In particular, we show that an attacker can build all the necessary primitives for performing effective GPU-based microarchitectural attacks and that these primitives are all exposed to the web through standardized browser extensions, allowing side-channel and Rowhammer attacks from JavaScript. These attacks bypass state-of-the-art mitigations and advance existing CPU-based attacks: we show the first end-to-end microarchitectural compromise of a browser running on a mobile phone in under two minutes by orchestrating our GPU primitives. While powerful, these GPU primitives are not easy to implement due to undocumented hardware features. We describe novel reverse engineering techniques for peeking into the previously unknown cache architecture and replacement policy of the Adreno 330, an integrated GPU found in many common mobile platforms. This information is necessary when building shader programs implementing our GPU primitives. We conclude by discussing mitigations against GPU-enabled attackers

    Faster data structures and graphics hardware techniques for high performance rendering

    Get PDF
    Computer generated imagery is used in a wide range of disciplines, each with different requirements. As an example, real-time applications such as computer games have completely different restrictions and demands than offline rendering of feature films. A game has to render quickly using only limited resources, yet present visually adequate images. Film and visual effects rendering may not have strict time requirements but are still required to render efficiently utilizing huge render systems with hundreds or even thousands of CPU cores. In real-time rendering, with limited time and hardware resources, it is always important to produce as high rendering quality as possible given the constraints available. The first paper in this thesis presents an analytical hardware model together with a feed-back system that guarantees the highest level of image quality subject to a limited time budget. As graphics processing units grow more powerful, power consumption becomes a critical issue. Smaller handheld devices have only a limited source of energy, their battery, and both small devices and high-end hardware are required to minimize energy consumption not to overheat. The second paper presents experiments and analysis which consider power usage across a range of real-time rendering algorithms and shadow algorithms executed on high-end, integrated and handheld hardware. Computing accurate reflections and refractions effects has long been considered available only in offline rendering where time isn’t a constraint. The third paper presents a hybrid approach, utilizing the speed of real-time rendering algorithms and hardware with the quality of offline methods to render high quality reflections and refractions in real-time. The fourth and fifth paper present improvements in construction time and quality of Bounding Volume Hierarchies (BVH). Building BVHs faster reduces rendering time in offline rendering and brings ray tracing a step closer towards a feasible real-time approach. Bonsai, presented in the fourth paper, constructs BVHs on CPUs faster than contemporary competing algorithms and produces BVHs of a very high quality. Following Bonsai, the fifth paper presents an algorithm that refines BVH construction by allowing triangles to be split. Although splitting triangles increases construction time, it generally allows for higher quality BVHs. The fifth paper introduces a triangle splitting BVH construction approach that builds BVHs with quality on a par with an earlier high quality splitting algorithm. However, the method presented in paper five is several times faster in construction time

    Exploiting frame coherence in real-time rendering for energy-efficient GPUs

    Get PDF
    The computation capabilities of mobile GPUs have greatly evolved in the last generations, allowing real-time rendering of realistic scenes. However, the desire for processing complex environments clashes with the battery-operated nature of smartphones, for which users expect long operating times per charge and a low-enough temperature to comfortably hold them. Consequently, improving the energy-efficiency of mobile GPUs is paramount to fulfill both performance and low-power goals. The work of the processors from within the GPU and their accesses to off-chip memory are the main sources of energy consumption in graphics workloads. Yet most of this energy is spent in redundant computations, as the frame rate required to produce animations results in a sequence of extremely similar images. The goal of this thesis is to improve the energy-efficiency of mobile GPUs by designing micro-architectural mechanisms that leverage frame coherence in order to reduce the redundant computations and memory accesses inherent in graphics applications. First, we focus on reducing redundant color computations. Mobile GPUs typically employ an architecture called Tile-Based Rendering, in which the screen is divided into tiles that are independently rendered in on-chip buffers. It is common that more than 80% of the tiles produce exactly the same output between consecutive frames. We propose Rendering Elimination (RE), a mechanism that accurately determines such occurrences by computing and storing signatures of the inputs of all the tiles in a frame. If the signatures of a tile across consecutive frames are the same, the colors computed in the preceding frame are reused, saving all computations and memory accesses associated to the rendering of the tile. We show that RE vastly outperforms related schemes found in the literature, achieving a reduction of energy consumption of 37% and execution time of 33% with minimal overheads. Next, we focus on reducing redundant computations of fragments that will eventually not be visible. In real-time rendering, objects are processed in the order they are submitted to the GPU, which usually causes that the results of previously-computed objects are overwritten by new objects that turn occlude them. Consequently, whether or not a particular object will be occluded is not known until the entire scene has been processed. Based on the fact that visibility tends to remain constant across consecutive frames, we propose Early Visibility Resolution (EVR), a mechanism that predicts visibility based on information obtained in the preceding frame. EVR first computes and stores the depth of the farthest visible point after rendering each tile. Whenever a tile is rendered in the following frame, primitives that are farther from the observer than the stored depth are predicted to be occluded, and processed after the ones predicted to be visible. Additionally, this visibility prediction scheme is used to improve Rendering Elimination’s equal tile detection capabilities by not adding primitives predicted to be occluded in the signature. With minor hardware costs, EVR is shown to provide a reduction of energy consumption of 43% and execution time of 39%. Finally, we focus on reducing computations in tiles with low spatial frequencies. GPUs produce pixel colors by sampling triangles once per pixel and performing computations on each sampling location. However, most screen regions do not include sufficient detail to require high sampling rates, leading to a significant amount of energy wasted computing the same color for neighboring pixels. Given that spatial frequencies are maintained across frames, we propose Dynamic Sampling Rate, a mechanism that analyzes the spatial frequencies of tiles and determines the best sampling rate for them, which is applied in the following frame. Results show that Dynamic Sampling Rate significantly reduces processor activity, yielding energy savings of 40% and execution time reductions of 35%.La capacitat de càlcul de les GPU mòbils ha augmentat en gran mesura en les darreres generacions, permetent el renderitzat de paisatges complexos en temps real. Nogensmenys, el desig de processar escenes cada vegada més realistes xoca amb el fet que aquests dispositius funcionen amb bateries, i els usuaris n’esperen llargues durades i una temperatura prou baixa com per a ser agafats còmodament. En conseqüència, millorar l’eficiència energètica de les GPU mòbils és essencial per a aconseguir els objectius de rendiment i baix consum. Els processadors de la GPU i els seus accessos a memòria són els principals consumidors d’energia en càrregues gràfiques, però molt d’aquest consum és malbaratat en càlculs redundants, ja que les animacions produïdes s¿aconsegueixen renderitzant una seqüència d’imatges molt similars. L’objectiu d’aquesta tesi és millorar l’eficiència energètica de les GPU mòbils mitjançant el disseny de mecanismes microarquitectònics que aprofitin la coherència entre imatges per a reduir els càlculs i accessos redundants inherents a les aplicacions gràfiques. Primerament, ens centrem en reduir càlculs redundants de colors. A les GPU mòbils, sovint s'empra una arquitectura anomenada Tile-Based Rendering, en què la pantalla es divideix en regions que es processen independentment dins del xip. És habitual que més del 80% de les regions de pantalla produeixin els mateixos colors entre imatges consecutives. Proposem Rendering Elimination (RE), un mecanisme que determina acuradament aquests casos computant una signatura de les entrades de totes les regions. Si les signatures de dues imatges són iguals, es reutilitzen els colors calculats a la imatge anterior, el que estalvia tots els càlculs i accessos a memòria de la regió. RE supera àmpliament propostes relacionades de la literatura, aconseguint una reducció del consum energètic del 37% i del temps d’execució del 33%. Seguidament, ens centrem en reduir càlculs redundants en fragments que eventualment no seran visibles. En aplicacions gràfiques, els objectes es processen en l’ordre en què son enviats a la GPU, el que sovint causa que resultats ja processats siguin sobreescrits per nous objectes que els oclouen. Per tant, no se sap si un objecte serà visible o no fins que tota l’escena ha estat processada. Fonamentats en el fet que la visibilitat tendeix a ser constant entre imatges, proposem Early Visibility Resolution (EVR), un mecanisme que prediu la visibilitat basat en informació obtinguda a la imatge anterior. EVR computa i emmagatzema la profunditat del punt visible més llunyà després de processar cada regió de pantalla. Quan es processa una regió a la imatge següent, es prediu que les primitives més llunyanes a el punt guardat seran ocloses i es processen després de les que es prediuen que seran visibles. Addicionalment, aquest esquema de predicció s’empra en millorar la detecció de regions redundants de RE al no afegir les primitives que es prediu que seran ocloses a les signatures. Amb un cost de maquinari mínim, EVR aconsegueix una millora del consum energètic del 43% i del temps d’execució del 39%. Finalment, ens centrem a reduir càlculs en regions de pantalla amb poca freqüència espacial. Les GPU actuals produeixen colors mostrejant els triangles una vegada per cada píxel i fent càlculs a cada localització mostrejada. Però la majoria de regions no tenen suficient detall per a necessitar altes freqüències de mostreig, el que implica un malbaratament d’energia en el càlcul del mateix color en píxels adjacents. Com les freqüències tendeixen a mantenir-se en el temps, proposem Dynamic Sampling Rate (DSR)¸ un mecanisme que analitza les freqüències de les regions una vegada han estat renderitzades i en determina la menor freqüència de mostreig a la que es poden processar, que s’aplica a la següent imatge..
    corecore