220 research outputs found

    a fast heuristic for routing in post disaster humanitarian relief logistics

    Get PDF
    Abstract In the last decades, natural disasters have been affecting the human life of millions of people. The impressive scale of these disasters has pointed out the need for an effective management of the relief supply operations. One of the crucial issues in this context is the routing of vehicles carrying critical supplies and help to disaster victims. This problem poses unique logistics challenges, including damaged transportation infrastructure and limited knowledge on the road travel times. In such circumstances, selecting more reliable paths could help the rescue team to provide fast services to those in needs. The classic cost-minimizing routing problems do not properly reflect the relevant issue of the arrival time, which clearly has a serious impact on the survival rate of the affected community. In this paper, we focus specifically on the arrival time objective function in a multi-vehicle routing problem where stochastic travel times are taken into account. The considered problem should be solved promptly in the aftermath of a disaster, hence we propose a fast heuristic that could be applied to solve the problem

    A fast heuristic for routing in post-disaster humanitarian relief logistics

    Get PDF
    In the last decades, natural disasters have been affecting the human life of millions of people. The impressive scale of these disasters has pointed out the need for an effective management of the relief supply operations. One of the crucial issues in this context is the routing of vehicles carrying critical supplies and help to disaster victims. This problem poses unique logistics challenges, including damaged transportation infrastructure and limited knowledge on the road travel times. In such circumstances, selecting more reliable paths could help the rescue team to provide fast services to those in needs. The classic cost-minimizing routing problems do not properly reflect the relevant issue of the arrival time, which clearly has a serious impact on the survival rate of the affected community. In this paper, we focus specifically on the arrival time objective function in a multi-vehicle routing problem where stochastic travel times are taken into account. The considered problem should be solved promptly in the aftermath of a disaster, hence we propose a fast heuristic that could be applied to solve the problem

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Search for optimal routes on roads applying metaheuristic algorithms

    Get PDF
    The design of efficient routes for vehicles visiting a significant number of destinations is a critical factor for the competitiveness of many companies. The design of such routes is known as the vehicle routing problem. Indeed, efficient vehicle routing is one of the most studied problems in the areas of logistics and combinatorial optimization. The present study presents a memetic algorithm that evolves using a mechanism inspired by virus mutations. Additionally, the algorithm uses Taboo Search as an intensification mechanism

    The multi-depot k-traveling repairman problem

    Get PDF
    In this paper, we study the multi-depot k-traveling repairman problem. This problem extends the traditional traveling repairman problem to the multi-depot case. Its objective, similar to the single depot variant, is the minimization of the sum of the arrival times to customers. We propose two distinct formulations to model the problem, obtained on layered graphs. In order to find feasible solutions for the largest instances, we propose a hybrid genetic algorithm where initial solutions are built using a splitting heuristic and a local search is embedded into the genetic algorithm. The efficiency of the mathematical formulations and of the solution approach are investigated through computational experiments. The proposed models are scalable enough to solve instances up to 240 customers

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems

    An updated annotated bibliography on arc routing problems

    Get PDF
    The number of arc routing publications has increased significantly in the last decade. Such an increase justifies a second annotated bibliography, a sequel to Corberán and Prins (Networks 56 (2010), 50–69), discussing arc routing studies from 2010 onwards. These studies are grouped into three main sections: single vehicle problems, multiple vehicle problems and applications. Each main section catalogs problems according to their specifics. Section 2 is therefore composed of four subsections, namely: the Chinese Postman Problem, the Rural Postman Problem, the General Routing Problem (GRP) and Arc Routing Problems (ARPs) with profits. Section 3, devoted to the multiple vehicle case, begins with three subsections on the Capacitated Arc Routing Problem (CARP) and then delves into several variants of multiple ARPs, ending with GRPs and problems with profits. Section 4 is devoted to applications, including distribution and collection routes, outdoor activities, post-disaster operations, road cleaning and marking. As new applications emerge and existing applications continue to be used and adapted, the future of arc routing research looks promising.info:eu-repo/semantics/publishedVersio
    • …
    corecore