123 research outputs found

    Applying machine learning to the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition

    Get PDF
    Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.Comment: 16 page

    Counting and computing regions of DD-decomposition: algebro-geometric approach

    Full text link
    New methods for DD-decomposition analysis are presented. They are based on topology of real algebraic varieties and computational real algebraic geometry. The estimate of number of root invariant regions for polynomial parametric families of polynomial and matrices is given. For the case of two parametric family more sharp estimate is proven. Theoretic results are supported by various numerical simulations that show higher precision of presented methods with respect to traditional ones. The presented methods are inherently global and could be applied for studying DD-decomposition for the space of parameters as a whole instead of some prescribed regions. For symbolic computations the Maple v.14 software and its package RegularChains are used.Comment: 16 pages, 8 figure

    An implementation of Sub-CAD in Maple

    Get PDF
    Cylindrical algebraic decomposition (CAD) is an important tool for the investigation of semi-algebraic sets, with applications in algebraic geometry and beyond. We have previously reported on an implementation of CAD in Maple which offers the original projection and lifting algorithm of Collins along with subsequent improvements. Here we report on new functionality: specifically the ability to build cylindrical algebraic sub-decompositions (sub-CADs) where only certain cells are returned. We have implemented algorithms to return cells of a prescribed dimensions or higher (layered {\scad}s), and an algorithm to return only those cells on which given polynomials are zero (variety {\scad}s). These offer substantial savings in output size and computation time. The code described and an introductory Maple worksheet / pdf demonstrating the full functionality of the package are freely available online at http://opus.bath.ac.uk/43911/.Comment: 9 page

    Using the distribution of cells by dimension in a cylindrical algebraic decomposition

    Get PDF
    We investigate the distribution of cells by dimension in cylindrical algebraic decompositions (CADs). We find that they follow a standard distribution which seems largely independent of the underlying problem or CAD algorithm used. Rather, the distribution is inherent to the cylindrical structure and determined mostly by the number of variables. This insight is then combined with an algorithm that produces only full-dimensional cells to give an accurate method of predicting the number of cells in a complete CAD. Since constructing only full-dimensional cells is relatively inexpensive (involving no costly algebraic number calculations) this leads to heuristics for helping with various questions of problem formulation for CAD, such as choosing an optimal variable ordering. Our experiments demonstrate that this approach can be highly effective.Comment: 8 page

    An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions

    Full text link
    In this paper, we propose an incremental algorithm for computing cylindrical algebraic decompositions. The algorithm consists of two parts: computing a complex cylindrical tree and refining this complex tree into a cylindrical tree in real space. The incrementality comes from the first part of the algorithm, where a complex cylindrical tree is constructed by refining a previous complex cylindrical tree with a polynomial constraint. We have implemented our algorithm in Maple. The experimentation shows that the proposed algorithm outperforms existing ones for many examples taken from the literature

    Comparing machine learning models to choose the variable ordering for cylindrical algebraic decomposition

    Get PDF
    There has been recent interest in the use of machine learning (ML) approaches within mathematical software to make choices that impact on the computing performance without affecting the mathematical correctness of the result. We address the problem of selecting the variable ordering for cylindrical algebraic decomposition (CAD), an important algorithm in Symbolic Computation. Prior work to apply ML on this problem implemented a Support Vector Machine (SVM) to select between three existing human-made heuristics, which did better than anyone heuristic alone. The present work extends to have ML select the variable ordering directly, and to try a wider variety of ML techniques. We experimented with the NLSAT dataset and the Regular Chains Library CAD function for Maple 2018. For each problem, the variable ordering leading to the shortest computing time was selected as the target class for ML. Features were generated from the polynomial input and used to train the following ML models: k-nearest neighbours (KNN) classifier, multi-layer perceptron (MLP), decision tree (DT) and SVM, as implemented in the Python scikit-learn package. We also compared these with the two leading human constructed heuristics for the problem: Brown's heuristic and sotd. On this dataset all of the ML approaches outperformed the human made heuristics, some by a large margin.Comment: Accepted into CICM 201

    Recent advances in real geometric reasoning

    Get PDF
    In the 1930s Tarski showed that real quantifier elimination was possible, and in 1975 Collins gave a remotely practicable method, albeit with doubly-exponential complexity, which was later shown to be inherent. We discuss some of the recent major advances in Collins method: such as an alternative approach based on passing via the complexes, and advances which come closer to "solving the question asked" rather than "solving all problems to do with these polynomials"

    Cylindrical Algebraic Sub-Decompositions

    Full text link
    Cylindrical algebraic decompositions (CADs) are a key tool in real algebraic geometry, used primarily for eliminating quantifiers over the reals and studying semi-algebraic sets. In this paper we introduce cylindrical algebraic sub-decompositions (sub-CADs), which are subsets of CADs containing all the information needed to specify a solution for a given problem. We define two new types of sub-CAD: variety sub-CADs which are those cells in a CAD lying on a designated variety; and layered sub-CADs which have only those cells of dimension higher than a specified value. We present algorithms to produce these and describe how the two approaches may be combined with each other and the recent theory of truth-table invariant CAD. We give a complexity analysis showing that these techniques can offer substantial theoretical savings, which is supported by experimentation using an implementation in Maple.Comment: 26 page

    Need Polynomial Systems Be Doubly-Exponential?

    Get PDF
    Polynomial Systems, or at least their algorithms, have the reputation of being doubly-exponential in the number of variables [Mayr and Mayer, 1982], [Davenport and Heintz, 1988]. Nevertheless, the Bezout bound tells us that that number of zeros of a zero-dimensional system is singly-exponential in the number of variables. How should this contradiction be reconciled? We first note that [Mayr and Ritscher, 2013] shows that the doubly exponential nature of Gr\"{o}bner bases is with respect to the dimension of the ideal, not the number of variables. This inspires us to consider what can be done for Cylindrical Algebraic Decomposition which produces a doubly-exponential number of polynomials of doubly-exponential degree. We review work from ISSAC 2015 which showed the number of polynomials could be restricted to doubly-exponential in the (complex) dimension using McCallum's theory of reduced projection in the presence of equational constraints. We then discuss preliminary results showing the same for the degree of those polynomials. The results are under primitivity assumptions whose importance we illustrate.Comment: Extended Abstract for ICMS 2016 Presentation. arXiv admin note: text overlap with arXiv:1605.0249
    corecore