7,793 research outputs found

    A hybrid algorithm for flexible job-shop scheduling problem with setup times

    Get PDF
    [EN] Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to be processed according to a given order. The Flexible Job Shop problem (FJSP) is a generalization of the above-mentioned problem, where each operation can be processed by a set of resources and has a processing time depending on the resource used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic algorithm (GA) and variable neighbourhood search (VNS) to solve this problem. To evaluate the performance of our algorithm, we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against the available ones in terms of solution quality.Azzouz, A.; Ennigrou, M.; Ben Said, L. (2017). A hybrid algorithm for flexible job-shop scheduling problem with setup times. International Journal of Production Management and Engineering. 5(1):23-30. doi:10.4995/ijpme.2017.6618SWORD233051Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2), 345-378. doi:10.1016/j.ejor.2015.04.004Azzouz, A., Ennigrou, M., & Jlifi, B. (2015). Diversifying TS using GA in Multi-agent System for Solving Flexible Job Shop Problem. Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics. doi:10.5220/0005511000940101Azzouz, A., Ennigrou, M., Jlifi, B., & Ghedira, K. (2012). Combining Tabu Search and Genetic Algorithm in a Multi-agent System for Solving Flexible Job Shop Problem. 2012 11th Mexican International Conference on Artificial Intelligence. doi:10.1109/micai.2012.12Bagheri, A., & Zandieh, M. (2011). Bi-criteria flexible job-shop scheduling with sequence-dependent setup times—Variable neighborhood search approach. Journal of Manufacturing Systems, 30(1), 8-15. doi:10.1016/j.jmsy.2011.02.004Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research, 41(3), 157-183. doi:10.1007/bf02023073Cheung, W., & Zhou, H. (2001). Annals of Operations Research, 107(1/4), 65-81. doi:10.1023/a:1014990729837Fattahi, P., Saidi Mehrabad, M., & Jolai, F. (2007). Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3), 331-342. doi:10.1007/s10845-007-0026-8González, M. A., Rodriguez Vela, C., Varela, R. (2013). An efficient memetic algorithm for the flexible job shop with setup times. In Twenty-Third International Conference on Automated, pp. 91-99.Hurink, J., Jurisch, B., & Thole, M. (1994). Tabu search for the job-shop scheduling problem with multi-purpose machines. OR Spektrum, 15(4), 205-215. doi:10.1007/bf01719451Imanipour, N. (2006). Modeling&Solving Flexible Job Shop Problem With Sequence Dependent Setup Times. 2006 International Conference on Service Systems and Service Management. doi:10.1109/icsssm.2006.320680KIM, S. C., & BOBROWSKI, P. M. (1994). Impact of sequence-dependent setup time on job shop scheduling performance. International Journal of Production Research, 32(7), 1503-1520. doi:10.1080/00207549408957019Moghaddas, R., Houshmand, M. (2008). Job-shop scheduling problem with sequence dependent setup times. Proceedings of the International MultiConference of Engineers and Computer Scientists,2, 978-988.Mousakhani, M. (2013). Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness. International Journal of Production Research, 51(12), 3476-3487. doi:10.1080/00207543.2012.746480Naderi, B., Zandieh, M., & Fatemi Ghomi, S. M. T. (2008). Scheduling sequence-dependent setup time job shops with preventive maintenance. The International Journal of Advanced Manufacturing Technology, 43(1-2), 170-181. doi:10.1007/s00170-008-1693-0Najid, N. M., Dauzere-Peres, S., & Zaidat, A. (s. f.). A modified simulated annealing method for flexible job shop scheduling problem. IEEE International Conference on Systems, Man and Cybernetics. doi:10.1109/icsmc.2002.1176334Nouiri, M., Bekrar, A., Jemai, A., Niar, S., & Ammari, A. C. (2015). An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem. Journal of Intelligent Manufacturing, 29(3), 603-615. doi:10.1007/s10845-015-1039-3Oddi, A., Rasconi, R., Cesta, A., & Smith, S. (2011). Applying iterative flattening search to the job shop scheduling problem with alternative resources and sequence dependent setup times. In COPLAS 2011 Proceedings of the Workshopon Constraint Satisfaction Techniques for Planning and Scheduling Problems, pp. 15-22.Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the Flexible Job-shop Scheduling Problem. Computers & Operations Research, 35(10), 3202-3212. doi:10.1016/j.cor.2007.02.014Sadrzadeh, A. (2013). Development of Both the AIS and PSO for Solving the Flexible Job Shop Scheduling Problem. Arabian Journal for Science and Engineering, 38(12), 3593-3604. doi:10.1007/s13369-013-0625-ySaidi-Mehrabad, M., & Fattahi, P. (2006). Flexible job shop scheduling with tabu search algorithms. The International Journal of Advanced Manufacturing Technology, 32(5-6), 563-570. doi:10.1007/s00170-005-0375-4Vilcot, G., & Billaut, J.-C. (2011). A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem. International Journal of Production Research, 49(23), 6963-6980. doi:10.1080/00207543.2010.526016Shi-Jin, W., Bing-Hai, Z., & Li-Feng, X. (2008). A filtered-beam-search-based heuristic algorithm for flexible job-shop scheduling problem. International Journal of Production Research, 46(11), 3027-3058. doi:10.1080/00207540600988105Wang, S., & Yu, J. (2010). An effective heuristic for flexible job-shop scheduling problem with maintenance activities. Computers & Industrial Engineering, 59(3), 436-447. doi:10.1016/j.cie.2010.05.016Zandieh, M., Yazdani, M., Gholami, M., & Mousakhani, M. (2009). A Simulated Annealing Algorithm for Flexible Job-Shop Scheduling Problem. Journal of Applied Sciences, 9(4), 662-670. doi:10.3923/jas.2009.662.670Zambrano Rey, G., Bekrar, A., Prabhu, V., & Trentesaux, D. (2014). Coupling a genetic algorithm with the distributed arrival-time control for the JIT dynamic scheduling of flexible job-shops. International Journal of Production Research, 52(12), 3688-3709. doi:10.1080/00207543.2014.881575Zhang, G., Gao, L., & Shi, Y. (2011). An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Systems with Applications, 38(4), 3563-3573. doi:10.1016/j.eswa.2010.08.145Zhang, G., Shao, X., Li, P., & Gao, L. (2009). An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers & Industrial Engineering, 56(4), 1309-1318. doi:10.1016/j.cie.2008.07.021Zhou, Y., Li, B., & Yang, J. (2005). Study on job shop scheduling with sequence-dependent setup times using biological immune algorithm. The International Journal of Advanced Manufacturing Technology, 30(1-2), 105-111. doi:10.1007/s00170-005-0022-0Ziaee, M. (2013). A heuristic algorithm for solving flexible job shop scheduling problem. The International Journal of Advanced Manufacturing Technology, 71(1-4), 519-528. doi:10.1007/s00170-013-5510-zZribi, N., Kacem, I., Kamel, A. E., & Borne, P. (2007). Assignment and Scheduling in Flexible Job-Shops by Hierarchical Optimization. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 37(4), 652-661. doi:10.1109/tsmcc.2007.89749

    An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints

    Full text link
    [EN] Nowadays, the manufacturing industry faces the challenge of reducing energy consumption and the associated environmental impacts. Production scheduling is an effective approach for energy-savings management. During the entire workshop production process, both the processing and transportation operations consume large amounts of energy. To reduce energy consumption, an energy-efficient job-shop scheduling problem (EJSP) with transportation constraints was proposed in this paper. First, a mixed-integer programming model was established to minimize both the comprehensive energy consumption and makespan in the EJSP. Then, an enhanced estimation of distribution algorithm (EEDA) was developed to solve the problem. In the proposed algorithm, an estimation of distribution algorithm was employed to perform the global search and an improved simulated annealing algorithm was designed to perform the local search. Finally, numerical experiments were implemented to analyze the performance of the EEDA. The results showed that the EEDA is a promising approach and that it can solve EJSP effectively and efficiently.This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB460018), the Innovation Foundation for Science and Technology of Yangzhou University (No. 2016CXJ020 and No. 2017CXJ018), Science and Technology Project of Yangzhou under (No. YZ2017278), Research Topics of Teaching Reform of Yangzhou University under (No. YZUJX2018-28B), and the Spanish Government (No. TIN2016-80856-R and No. TIN2015-65515-C4-1-R).Dai, M.; Zhang, Z.; Giret Boggino, AS.; Salido, MA. (2019). An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints. Sustainability. 11(11):1-23. https://doi.org/10.3390/su11113085S1231111Wu, X., & Sun, Y. (2018). A green scheduling algorithm for flexible job shop with energy-saving measures. Journal of Cleaner Production, 172, 3249-3264. doi:10.1016/j.jclepro.2017.10.342Wang, Q., Tang, D., Li, S., Yang, J., Salido, M., Giret, A., & Zhu, H. (2019). An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products. Sustainability, 11(2), 460. doi:10.3390/su11020460Meng, Y., Yang, Y., Chung, H., Lee, P.-H., & Shao, C. (2018). Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review. Sustainability, 10(12), 4779. doi:10.3390/su10124779Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744-757. doi:10.1016/j.ejor.2015.07.017Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140. doi:10.1016/j.jmsy.2015.08.002Akbar, M., & Irohara, T. (2018). Scheduling for sustainable manufacturing: A review. Journal of Cleaner Production, 205, 866-883. doi:10.1016/j.jclepro.2018.09.100Che, A., Wu, X., Peng, J., & Yan, P. (2017). Energy-efficient bi-objective single-machine scheduling with power-down mechanism. Computers & Operations Research, 85, 172-183. doi:10.1016/j.cor.2017.04.004Lee, S., Do Chung, B., Jeon, H. W., & Chang, J. (2017). A dynamic control approach for energy-efficient production scheduling on a single machine under time-varying electricity pricing. Journal of Cleaner Production, 165, 552-563. doi:10.1016/j.jclepro.2017.07.102Rubaiee, S., & Yildirim, M. B. (2019). An energy-aware multiobjective ant colony algorithm to minimize total completion time and energy cost on a single-machine preemptive scheduling. Computers & Industrial Engineering, 127, 240-252. doi:10.1016/j.cie.2018.12.020Zhang, M., Yan, J., Zhang, Y., & Yan, S. (2019). Optimization for energy-efficient flexible flow shop scheduling under time of use electricity tariffs. Procedia CIRP, 80, 251-256. doi:10.1016/j.procir.2019.01.062Li, J., Sang, H., Han, Y., Wang, C., & Gao, K. (2018). Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. Journal of Cleaner Production, 181, 584-598. doi:10.1016/j.jclepro.2018.02.004Lu, C., Gao, L., Li, X., Pan, Q., & Wang, Q. (2017). Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 144, 228-238. doi:10.1016/j.jclepro.2017.01.011Fu, Y., Tian, G., Fathollahi-Fard, A. M., Ahmadi, A., & Zhang, C. (2019). Stochastic multi-objective modelling and optimization of an energy-conscious distributed permutation flow shop scheduling problem with the total tardiness constraint. Journal of Cleaner Production, 226, 515-525. doi:10.1016/j.jclepro.2019.04.046Schulz, S., Neufeld, J. S., & Buscher, U. (2019). A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of Cleaner Production, 224, 421-434. doi:10.1016/j.jclepro.2019.03.155Liu, Y., Dong, H., Lohse, N., Petrovic, S., & Gindy, N. (2014). An investigation into minimising total energy consumption and total weighted tardiness in job shops. Journal of Cleaner Production, 65, 87-96. doi:10.1016/j.jclepro.2013.07.060Liu, Y., Dong, H., Lohse, N., & Petrovic, S. (2016). A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance. International Journal of Production Economics, 179, 259-272. doi:10.1016/j.ijpe.2016.06.019May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for energy-efficient job shop scheduling. International Journal of Production Research, 53(23), 7071-7089. doi:10.1080/00207543.2015.1005248Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361-3375. doi:10.1016/j.jclepro.2015.09.097Salido, M. A., Escamilla, J., Giret, A., & Barber, F. (2015). A genetic algorithm for energy-efficiency in job-shop scheduling. The International Journal of Advanced Manufacturing Technology, 85(5-8), 1303-1314. doi:10.1007/s00170-015-7987-0Masmoudi, O., Delorme, X., & Gianessi, P. (2019). Job-shop scheduling problem with energy consideration. International Journal of Production Economics, 216, 12-22. doi:10.1016/j.ijpe.2019.03.021Mokhtari, H., & Hasani, A. (2017). An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352. doi:10.1016/j.compchemeng.2017.05.004Meng, L., Zhang, C., Shao, X., & Ren, Y. (2019). MILP models for energy-aware flexible job shop scheduling problem. Journal of Cleaner Production, 210, 710-723. doi:10.1016/j.jclepro.2018.11.021Dai, M., Tang, D., Giret, A., & Salido, M. A. (2019). Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robotics and Computer-Integrated Manufacturing, 59, 143-157. doi:10.1016/j.rcim.2019.04.006Lacomme, P., Larabi, M., & Tchernev, N. (2013). Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles. International Journal of Production Economics, 143(1), 24-34. doi:10.1016/j.ijpe.2010.07.012Nageswararao, M., Narayanarao, K., & Ranagajanardhana, G. (2014). Simultaneous Scheduling of Machines and AGVs in Flexible Manufacturing System with Minimization of Tardiness Criterion. Procedia Materials Science, 5, 1492-1501. doi:10.1016/j.mspro.2014.07.336Saidi-Mehrabad, M., Dehnavi-Arani, S., Evazabadian, F., & Mahmoodian, V. (2015). An Ant Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs. Computers & Industrial Engineering, 86, 2-13. doi:10.1016/j.cie.2015.01.003Guo, Z., Zhang, D., Leung, S. Y. S., & Shi, L. (2016). A bi-level evolutionary optimization approach for integrated production and transportation scheduling. Applied Soft Computing, 42, 215-228. doi:10.1016/j.asoc.2016.01.052Karimi, S., Ardalan, Z., Naderi, B., & Mohammadi, M. (2017). Scheduling flexible job-shops with transportation times: Mathematical models and a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 41, 667-682. doi:10.1016/j.apm.2016.09.022Liu, Z., Guo, S., & Wang, L. (2019). Integrated green scheduling optimization of flexible job shop and crane transportation considering comprehensive energy consumption. Journal of Cleaner Production, 211, 765-786. doi:10.1016/j.jclepro.2018.11.231Tang, D., & Dai, M. (2015). Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem. Chinese Journal of Mechanical Engineering, 28(5), 1048-1055. doi:10.3901/cjme.2015.0617.082Hao, X., Lin, L., Gen, M., & Ohno, K. (2013). Effective Estimation of Distribution Algorithm for Stochastic Job Shop Scheduling Problem. Procedia Computer Science, 20, 102-107. doi:10.1016/j.procs.2013.09.246Wang, L., Wang, S., Xu, Y., Zhou, G., & Liu, M. (2012). A bi-population based estimation of distribution algorithm for the flexible job-shop scheduling problem. Computers & Industrial Engineering, 62(4), 917-926. doi:10.1016/j.cie.2011.12.014Jarboui, B., Eddaly, M., & Siarry, P. (2009). An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Computers & Operations Research, 36(9), 2638-2646. doi:10.1016/j.cor.2008.11.004Hauschild, M., & Pelikan, M. (2011). An introduction and survey of estimation of distribution algorithms. Swarm and Evolutionary Computation, 1(3), 111-128. doi:10.1016/j.swevo.2011.08.003Liu, F., Xie, J., & Liu, S. (2015). A method for predicting the energy consumption of the main driving system of a machine tool in a machining process. Journal of Cleaner Production, 105, 171-177. doi:10.1016/j.jclepro.2014.09.058Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418-429. doi:10.1016/j.rcim.2013.04.001Beasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166Zhao, F., Shao, Z., Wang, J., & Zhang, C. (2015). A hybrid differential evolution and estimation of distribution algorithm based on neighbourhood search for job shop scheduling problems. International Journal of Production Research, 54(4), 1039-1060. doi:10.1080/00207543.2015.1041575Van Laarhoven, P. J. M., Aarts, E. H. L., & Lenstra, J. K. (1992). Job Shop Scheduling by Simulated Annealing. Operations Research, 40(1), 113-125. doi:10.1287/opre.40.1.113Wang, L., & Zheng, D.-Z. (2001). An effective hybrid optimization strategy for job-shop scheduling problems. Computers & Operations Research, 28(6), 585-596. doi:10.1016/s0305-0548(99)00137-9Dorndorf, U., & Pesch, E. (1995). Evolution based learning in a job shop scheduling environment. Computers & Operations Research, 22(1), 25-40. doi:10.1016/0305-0548(93)e0016-mPark, B. J., Choi, H. R., & Kim, H. S. (2003). A hybrid genetic algorithm for the job shop scheduling problems. Computers & Industrial Engineering, 45(4), 597-613. doi:10.1016/s0360-8352(03)00077-

    An Extended Flexible Job Shop Scheduling Problem with Parallel Operations

    Get PDF
    Traditional planning and scheduling techniques still hold important roles in modern smart scheduling systems. Realistic features present in modern manufacturing systems need to be incorporated into these techniques. Flexible job-shop scheduling problem (FJSP) is one of the most challenging combinatorial optimization problems. FJSP is an extension of the classical job shop scheduling problem where an operation can be processed by several different machines. In this paper, we consider the FJSP with parallel operations (EFJSP) and we propose and compare a discrete firefly algorithm (FA) and a genetic algorithm (GA) for the problem. Several FJSP and EFJSP instances were used to evaluate the performance of the proposed algorithms. Comparisons among our methods and state-of-the-art algorithms are also provided. The experimental results demonstrate that the FA and GA achieved improvements in terms of efficiency and efficacy. Solutions obtained by both algorithms are comparable to those obtained by algorithms with local search. In addition, based on our initial experiments, results show that the proposed discrete firefly algorithm is feasible, more effective and efficient than our proposed genetic algorithm for the considered problem

    Solving FJSSP With a Genetic Algorithm

    Get PDF
    The Flexible Job Shop Scheduling Problem is an NP-Hard combinatorial problem. This paper aims to find a solution to this problem using genetic algorithms, and discuss the effectiveness of this. Initially, I did exploratory work on whether neural networks would be effective or not, and found a lot of trade offs between using neural networks and chromosome sequencing. In the end, I decided to use chromosome sequencing over neural networks, due to the scope of my problem being on a small scale rather than on a large scale. Therefore, the genetic algorithm was implemented using chromosome sequencing. My chromosomes were represented as binary strings with reserved bits for the machine and job numbers. This allowed me to experiment with different mutations such as random bit flip mutation and machine job swap mutations. The biggest benefit of genetic algorithms over heuristic algorithms is the potential for improvement. While greedy gives good results initially, genetic beats out greedy quickly after a small number of epochs. Furthermore, I suspect that genetic algorithms should be much faster than other learning algorithms, but as this is an under-documented metric, I decided to contribute my own results to help document this metric. For future work, it would be interesting to see how a neural network model would have reacted, and how its time to find a solution would compare to chromosome sequencing. Another interesting topic is a scheduler that can adapt to any variation of the Job Shop Scheduling Problem, as this would be very useful in the real world. One final interesting topic would be to implement some kind of dynamic job loading for this genetic algorithm, as in real world situations, new jobs and tasks get scheduled all the time. But, this is a very complicated problem, thus it is best left to the future

    Comparative Study of Genetic and Discrete Firefly Algorithm for Combinatorial Optimization

    Get PDF
    Flexible job-shop scheduling problem (FJSP) is one of the most challenging combinatorial optimization problems. FJSP is an extension of the classical job shop scheduling problem where an operation can be processed by several different machines. The FJSP contains two sub-problems, namely machine assignment problem and operation sequencing problem. In this paper, we propose and compare a discrete firefly algorithm (FA) and a genetic algorithm (GA) for the multi-objective FJSP. Three minimization objectives are considered, the maximum completion time, workload of the critical machine and total workload of all machines. Five well-known instances of FJSP have been used to evaluate the performance of the proposed algorithms. Comparisons among our methods and state-of-the-art algorithms are also provided. The experimental results demonstrate that the FA and GA have achieved improvements in terms of efficiency. Solutions obtained by both algorithms are comparable to those obtained by algorithms with local search. In addition, based on our initial experiments, results show that the proposed discrete firefly algorithm is feasible, more effective and efficient than our proposed genetic algorithm for solving multi-objective FJSP

    An investigation into minimising total energy consumption and total completion time in a flexible job shop for recycling carbon fiber reinforced polymer

    Get PDF
    The increased use of carbon fiber reinforced polymer (CFRP) in industry coupled with European Union restrictions on landfill disposal has resulted in a need to develop relevant recycling technologies. Several methods, such as mechanical grinding, thermolysis and solvolysis, have been tried to recover the carbon fibers. Optimisation techniques for reducing energy consumed by above processes have also been developed. However, the energy efficiency of recycling CFRP at the workshop level has never been considered before. An approach to incorporate energy reduction into consideration while making the scheduling plans for a CFRP recycling workshop is presented in this paper. This research sets in a flexible job shop circumstance, model for the bi-objective problem that minimise total processing energy consumption and makespan is developed. A modified Genetic Algorithm for solving the raw material lot splitting problem is developed. A case study of the lot sizing problem in the flexible job shop for recycling CFRP is presented to show how scheduling plans affect energy consumption, and to prove the feasibility of the model and the developed algorithm

    Integrating labor awareness to energy-efficient production scheduling under real-time electricity pricing : an empirical study

    Get PDF
    With the penetration of smart grid into factories, energy-efficient production scheduling has emerged as a promising method for industrial demand response. It shifts flexible production loads to lower-priced periods to reduce energy cost for the same production task. However, the existing methods only focus on integrating energy awareness to conventional production scheduling models. They ignore the labor cost which is shift-based and follows an opposite trend of energy cost. For instance, the energy cost is lower during nights while the labor cost is higher. Therefore, this paper proposes a method for energy-efficient and labor-aware production scheduling at the unit process level. This integrated scheduling model is mathematically formulated. Besides the state-based energy model and genetic algorithm-based optimization, a continuous-time shift accumulation heuristic is proposed to synchronize power states and labor shifts. In a case study of a Belgian plastic bottle manufacturer, a set of empirical sensitivity analyses were performed to investigate the impact of energy and labor awareness, as well as the production-related factors that influence the economic performance of a schedule. Furthermore, the demonstration was performed in 9 large-scale test instances, which encompass the cases where energy cost is minor, moderate, and major compared to the joint energy and labor cost. The results have proven that the ignorance of labor in existing energy-efficient production scheduling studies increases the joint energy and labor cost, although the energy cost can be minimized. To achieve effective production cost reduction, energy and labor awareness are recommended to be jointly considered in production scheduling. (C) 2017 Elsevier Ltd. All rights reserved

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods
    • 

    corecore