281 research outputs found

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Learning with Single View Co-training and Marginalized Dropout

    Get PDF
    The generalization properties of most existing machine learning techniques are predicated on the assumptions that 1) a sufficiently large quantity of training data is available; 2) the training and testing data come from some common distribution. Although these assumptions are often met in practice, there are also many scenarios in which training data from the relevant distribution is insufficient. We focus on making use of additional data, which is readily available or can be obtained easily but comes from a different distribution than the testing data, to aid learning. We present five learning scenarios, depending on how the distribution we used to sample the additional training data differs from the testing distribution: 1) learning with weak supervision; 2) domain adaptation; 3) learning from multiple domains; 4) learning from corrupted data; 5) learning with partial supervision. We introduce two strategies and manifest them in five ways to cope with the difference between the training and testing distribution. The first strategy, which gives rise to Pseudo Multi-view Co-training: PMC) and Co-training for Domain Adaptation: CODA), is inspired by the co-training algorithm for multi-view data. PMC generalizes co-training to the more common single view data and allows us to learn from weakly labeled data retrieved free from the web. CODA integrates PMC with an another feature selection component to address the feature incompatibility between domains for domain adaptation. PMC and CODA are evaluated on a variety of real datasets, and both yield record performance. The second strategy marginalized dropout leads to marginalized Stacked Denoising Autoencoders: mSDA), Marginalized Corrupted Features: MCF) and FastTag: FastTag). mSDA diminishes the difference between distributions associated with different domains by learning a new representation through marginalized corruption and reconstruciton. MCF learns from a known distribution which is created by corrupting a small set of training data, and improves robustness of learned classifiers by training on ``infinitely\u27\u27 many data sampled from the distribution. FastTag applies marginalized dropout to the output of partially labeled data to recover missing labels for multi-label tasks. These three algorithms not only achieve the state-of-art performance in various tasks, but also deliver orders of magnitude speed up at training and testing comparing to competing algorithms

    Models and Methods for Estimation and Filtering of Signal-Dependent Noise in Imaging

    Get PDF
    The work presented in this thesis focuses on Image Processing, that is the branch of Signal Processing that centers its interest on images, sequences of images, and videos. It has various applications: imaging for traditional cameras, medical imaging, e.g., X-ray and magnetic resonance imaging (MRI), infrared imaging (thermography), e.g., for security purposes, astronomical imaging for space exploration, three-dimensional (video+depth) signal processing, and many more.This thesis covers a small but relevant slice that is transversal to this vast pool of applications: noise estimation and denoising. To appreciate the relevance of this thesis it is essential to understand why noise is such an important part of Image Processing. Every acquisition device, and every measurement is subject to interferences that causes random fluctuations in the acquired signals. If not taken into consideration with a suitable mathematical approach, these fluctuations might invalidate any use of the acquired signal. Consider, for example, an MRI used to detect a possible condition; if not suitably processed and filtered, the image could lead to a wrong diagnosis. Therefore, before any acquired image is sent to an end-user (machine or human), it undergoes several processing steps. Noise estimation and denoising are usually parts of these fundamental steps.Some sources of noise can be removed by suitably modeling the acquisition process of the camera, and developing hardware based on that model. Other sources of noise are instead inevitable: high/low light conditions of the acquired scene, hardware imperfections, temperature of the device, etc. To remove noise from an image, the noise characteristics have to be first estimated. The branch of image processing that fulfills this role is called noise estimation. Then, it is possible to remove the noise artifacts from the acquired image. This process is referred to as denoising.For practical reasons, it is convenient to model noise as random variables. In this way, we assume that the noise fluctuations take values whose probabilities follow specific distributions characterized only by few parameters. These are the parameters that we estimate. We focus our attention on noise modeled by Gaussian distributions, Poisson distributions, or a combination of these. These distributions are adopted for modeling noise affecting images from digital cameras, microscopes, telescopes, radiography systems, thermal cameras, depth-sensing cameras, etc. The parameters that define a Gaussian distribution are its mean and its variance, while a Poisson distribution depends only on its mean, since its variance is equal to the mean (signal-dependent variance). Consequently, the parameters of a Poisson-Gaussian distribution describe the relation between the intensity of the noise-free signal and the variance of the noise affecting it. Degradation models of this kind are referred to as signal-dependent noise.Estimation of signal-dependent noise is commonly performed by processing, individually, groups of pixels with equal intensity in order to sample the aforementioned relation between signal mean and noise variance. Such sampling is often subject to outliers; we propose a robust estimation model where the noise parameters are estimated optimizing a likelihood function that models the local variance estimates from each group of pixels as mixtures of Gaussian and Cauchy distributions. The proposed model is general and applicable to a variety of signal-dependent noise models, including also possible clipping of the data. We also show that, under certain hypotheses, the relation between signal mean and noise variance can also be effectively sampled from groups of pixels of possibly different intensities.Then, we propose a spatially adaptive transform to improve the denoising performance of a specific class of filters, namely nonlocal transformdomain collaborative filters. In particular, the proposed transform exploits the spatial coordinates of nonlocal similar features from an image to better decorrelate the data, and consequently to improve the filtering. Unlike non-adaptive transforms, the proposed spatially adaptive transform is capable of representing spatially smooth coarse-scale variations in the similar features of the image. Further, based on the same paradigm, we propose a method that adaptively enhances the local image features depending on their orientation with respect to the relative coordinates of other similar features at other locations in the image.An established approach for removing Poisson noise utilizes so-called variance-stabilizing transformations (VST) to make the noise variance independent of the mean of the signal, hence enabling denoising by a standard denoiser for additive Gaussian noise. Within this framework, we propose an iterative method where at each iteration the previous estimate is summed back to the noisy image in order to improve the stabilizing performance of the transformation, and consequently to improve the denoising results. The proposed iterative procedure allows to circumvent the typical drawbacks that VSTs experience at very low intensities, and thus allows us to apply the standard denoiser effectively even at extremely low counts.The developed methods achieve state-of-the-art results in their respective field of application

    Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

    Full text link
    While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising, existing methods mostly rely on simple noise assumptions, such as additive white Gaussian noise (AWGN), JPEG compression noise and camera sensor noise, and a general-purpose blind denoising method for real images remains unsolved. In this paper, we attempt to solve this problem from the perspective of network architecture design and training data synthesis. Specifically, for the network architecture design, we propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block, and then plug it as the main building block into the widely-used image-to-image translation UNet architecture. For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise (including Gaussian, Poisson, speckle, JPEG compression, and processed camera sensor noises) and resizing, and also involves a random shuffle strategy and a double degradation strategy. Extensive experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance and the new degradation model can help to significantly improve the practicability. We believe our work can provide useful insights into current denoising research.Comment: Codes: https://github.com/cszn/SCUNe

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented

    Real-Time Quantum Noise Suppression In Very Low-Dose Fluoroscopy

    Get PDF
    Fluoroscopy provides real-time X-ray screening of patient's organs and of various radiopaque objects, which make it an invaluable tool for many interventional procedures. For this reason, the number of fluoroscopy screenings has experienced a consistent growth in the last decades. However, this trend has raised many concerns about the increase in X-ray exposure, as even low-dose procedures turned out to be not as safe as they were considered, thus demanding a rigorous monitoring of the X-ray dose delivered to the patients and to the exposed medical staff. In this context, the use of very low-dose protocols would be extremely beneficial. Nonetheless, this would result in very noisy images, which need to be suitably denoised in real-time to support interventional procedures. Simple smoothing filters tend to produce blurring effects that undermines the visibility of object boundaries, which is essential for the human eye to understand the imaged scene. Therefore, some denoising strategies embed noise statistics-based criteria to improve their denoising performances. This dissertation focuses on the Noise Variance Conditioned Average (NVCA) algorithm, which takes advantage of the a priori knowledge of quantum noise statistics to perform noise reduction while preserving the edges and has already outperformed many state-of-the-art methods in the denoising of images corrupted by quantum noise, while also being suitable for real-time hardware implementation. Different issues are addressed that currently limit the actual use of very low-dose protocols in clinical practice, e.g. the evaluation of actual performances of denoising algorithms in very low-dose conditions, the optimization of tuning parameters to obtain the best denoising performances, the design of an index to properly measure the quality of X-ray images, and the assessment of an a priori noise characterization approach to account for time-varying noise statistics due to changes of X-ray tube settings. An improved NVCA algorithm is also presented, along with its real-time hardware implementation on a Field Programmable Gate Array (FPGA). The novel algorithm provides more efficient noise reduction performances also for low-contrast moving objects, thus relaxing the trade-off between noise reduction and edge preservation, while providing a further reduction of hardware complexity, which allows for low usage of logic resources also on small FPGA platforms. The results presented in this dissertation provide the means for future studies aimed at embedding the NVCA algorithm in commercial fluoroscopic devices to accomplish real-time denoising of very low-dose X-ray images, which would foster their actual use in clinical practice

    Geometric Structure Extraction and Reconstruction

    Get PDF
    Geometric structure extraction and reconstruction is a long-standing problem in research communities including computer graphics, computer vision, and machine learning. Within different communities, it can be interpreted as different subproblems such as skeleton extraction from the point cloud, surface reconstruction from multi-view images, or manifold learning from high dimensional data. All these subproblems are building blocks of many modern applications, such as scene reconstruction for AR/VR, object recognition for robotic vision and structural analysis for big data. Despite its importance, the extraction and reconstruction of a geometric structure from real-world data are ill-posed, where the main challenges lie in the incompleteness, noise, and inconsistency of the raw input data. To address these challenges, three studies are conducted in this thesis: i) a new point set representation for shape completion, ii) a structure-aware data consolidation method, and iii) a data-driven deep learning technique for multi-view consistency. In addition to theoretical contributions, the algorithms we proposed significantly improve the performance of several state-of-the-art geometric structure extraction and reconstruction approaches, validated by extensive experimental results
    corecore