23,486 research outputs found

    An Effective Condition for Sampling Surfaces with Guarantees

    Get PDF
    The notion of -sample, as introduced by Amenta and Bern, has proven to be a key concept in the theory of sampled surfaces. Of particular interest is the fact that, if E is an -sample of a smooth surface S for a sufficiently small , then the Delaunay triangulation of E restricted to S is a good approximation of S, both in a topological and in a geometric sense. Hence, if one can construct an -sample, one also gets a good approximation of the surface. Moreover, correct reconstruction is ensured by various algorithms. In this paper, we introduce the notion of loose -sample. We show that the set of loose -samples contains and is asymptotically identical to the set of -samples. The main advantage of -samples over -samples is that they are easier to check and to construct. We also present a simple algorithm that constructs provably good surface samples and meshes

    Reconstruction of freeform surfaces for metrology

    Get PDF
    The application of freeform surfaces has increased since their complex shapes closely express a product's functional specifications and their machining is obtained with higher accuracy. In particular, optical surfaces exhibit enhanced performance especially when they take aspheric forms or more complex forms with multi-undulations. This study is mainly focused on the reconstruction of complex shapes such as freeform optical surfaces, and on the characterization of their form. The computer graphics community has proposed various algorithms for constructing a mesh based on the cloud of sample points. The mesh is a piecewise linear approximation of the surface and an interpolation of the point set. The mesh can further be processed for fitting parametric surfaces (Polyworks® or Geomagic®). The metrology community investigates direct fitting approaches. If the surface mathematical model is given, fitting is a straight forward task. Nonetheless, if the surface model is unknown, fitting is only possible through the association of polynomial Spline parametric surfaces. In this paper, a comparative study carried out on methods proposed by the computer graphics community will be presented to elucidate the advantages of these approaches. We stress the importance of the pre-processing phase as well as the significance of initial conditions. We further emphasize the importance of the meshing phase by stating that a proper mesh has two major advantages. First, it organizes the initially unstructured point set and it provides an insight of orientation, neighbourhood and curvature, and infers information on both its geometry and topology. Second, it conveys a better segmentation of the space, leading to a correct patching and association of parametric surfaces.EMR

    EM wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects

    Full text link
    We systematically study a collection of refractive phenomena that can possibly occur at the interface of a two-dimensional photonic crystal, with the use of the wave vector diagram formalism. Cases with a single propagating beam (in the positive or the negative direction) as well as cases with birefringence were observed. We examine carefully the conditions to obtain a single propagating beam inside the photonic crystal lattice. Our results indicate, that the presence of multiple reflected beams in the medium of incidence is neither a prerequisite nor does it imply multiple refracted beams. We characterize our results in respect to the origin of the propagating beam and the nature of propagation (left-handed or not). We identified four distinct cases that lead to a negatively refracted beam. Under these findings, the definition of phase velocity in a periodic medium is revisited and its physical interpretation discussed. To determine the ``rightness'' of propagation, we propose a wedge-type experiment. We discuss the intricate details for an appropriate wedge design for different types of cases in triangular and square structures. We extend our theoretical analysis, and examine our conclusions as one moves from the limit of photonic crystals with high index contrast between the constituent dielectrics to photonic crystals with low modulation of the refractive index. Finally, we examine the ``rightness'' of propagation in the one-dimensional multilayer medium, and obtain conditions that are different from those of two-dimensional systems.Comment: 65 pages, 17 figures, submitted to Phys. Rev.

    Towards Persistence-Based Reconstruction in Euclidean Spaces

    Get PDF
    Manifold reconstruction has been extensively studied for the last decade or so, especially in two and three dimensions. Recently, significant improvements were made in higher dimensions, leading to new methods to reconstruct large classes of compact subsets of Euclidean space Rd\R^d. However, the complexities of these methods scale up exponentially with d, which makes them impractical in medium or high dimensions, even for handling low-dimensional submanifolds. In this paper, we introduce a novel approach that stands in-between classical reconstruction and topological estimation, and whose complexity scales up with the intrinsic dimension of the data. Specifically, when the data points are sufficiently densely sampled from a smooth mm-submanifold of Rd\R^d, our method retrieves the homology of the submanifold in time at most c(m)n5c(m)n^5, where nn is the size of the input and c(m)c(m) is a constant depending solely on mm. It can also provably well handle a wide range of compact subsets of Rd\R^d, though with worse complexities. Along the way to proving the correctness of our algorithm, we obtain new results on \v{C}ech, Rips, and witness complex filtrations in Euclidean spaces

    Declutter and Resample: Towards parameter free denoising

    Get PDF
    In many data analysis applications the following scenario is commonplace: we are given a point set that is supposed to sample a hidden ground truth KK in a metric space, but it got corrupted with noise so that some of the data points lie far away from KK creating outliers also termed as {\em ambient noise}. One of the main goals of denoising algorithms is to eliminate such noise so that the curated data lie within a bounded Hausdorff distance of KK. Popular denoising approaches such as deconvolution and thresholding often require the user to set several parameters and/or to choose an appropriate noise model while guaranteeing only asymptotic convergence. Our goal is to lighten this burden as much as possible while ensuring theoretical guarantees in all cases. Specifically, first, we propose a simple denoising algorithm that requires only a single parameter but provides a theoretical guarantee on the quality of the output on general input points. We argue that this single parameter cannot be avoided. We next present a simple algorithm that avoids even this parameter by paying for it with a slight strengthening of the sampling condition on the input points which is not unrealistic. We also provide some preliminary empirical evidence that our algorithms are effective in practice

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    A generalized model for two dimensional quantum gravity and dynamics of random surfaces for d>1

    Full text link
    The possible interpretations of a new continuum model for the two-dimensional quantum gravity for d>1d>1 (dd=matter central charge), obtained by carefully treating both diffeomorphism and Weyl symmetries, are discussed. In particular we note that an effective field theory is achieved in low energy (large area) expansion, that may represent smooth self-avoiding random surfaces embedded in a dd-dimensional flat space-time for arbitrary dd. Moreover the values of some critical exponents are computed, that are in agreement with some recent numerical results.Comment: n. 11; Phyzz

    Control law parameterization for an aeroelastic wind-tunnel model equipped with an active roll control system and comparison with experiment

    Get PDF
    Nominal roll control laws were designed, implemented, and tested on an aeroelastically-scaled free-to-roll wind-tunnel model of an advanced fighter configuration. The tests were performed in the NASA Langley Transonic Dynamics Tunnel. A parametric study of the nominal roll control system was conducted. This parametric study determined possible control system gain variations which yielded identical closed-loop stability (roll mode pole location) and identical roll response but different maximum control-surface deflections. Comparison of analytical predictions with wind-tunnel results was generally very good
    • …
    corecore