2,309 research outputs found

    SAR data compression: Application, requirements, and designs

    Get PDF
    The feasibility of reducing data volume and data rate is evaluated for the Earth Observing System (EOS) Synthetic Aperture Radar (SAR). All elements of data stream from the sensor downlink data stream to electronic delivery of browse data products are explored. The factors influencing design of a data compression system are analyzed, including the signal data characteristics, the image quality requirements, and the throughput requirements. The conclusion is that little or no reduction can be achieved in the raw signal data using traditional data compression techniques (e.g., vector quantization, adaptive discrete cosine transform) due to the induced phase errors in the output image. However, after image formation, a number of techniques are effective for data compression

    Data compression for full motion video transmission

    Get PDF
    Clearly transmission of visual information will be a major, if not dominant, factor in determining the requirements for, and assessing the performance of the Space Exploration Initiative (SEI) communications systems. Projected image/video requirements which are currently anticipated for SEI mission scenarios are presented. Based on this information and projected link performance figures, the image/video data compression requirements which would allow link closure are identified. Finally several approaches which could satisfy some of the compression requirements are presented and possible future approaches which show promise for more substantial compression performance improvement are discussed

    A Novel Rate Control Algorithm for Onboard Predictive Coding of Multispectral and Hyperspectral Images

    Get PDF
    Predictive coding is attractive for compression onboard of spacecrafts thanks to its low computational complexity, modest memory requirements and the ability to accurately control quality on a pixel-by-pixel basis. Traditionally, predictive compression focused on the lossless and near-lossless modes of operation where the maximum error can be bounded but the rate of the compressed image is variable. Rate control is considered a challenging problem for predictive encoders due to the dependencies between quantization and prediction in the feedback loop, and the lack of a signal representation that packs the signal's energy into few coefficients. In this paper, we show that it is possible to design a rate control scheme intended for onboard implementation. In particular, we propose a general framework to select quantizers in each spatial and spectral region of an image so as to achieve the desired target rate while minimizing distortion. The rate control algorithm allows to achieve lossy, near-lossless compression, and any in-between type of compression, e.g., lossy compression with a near-lossless constraint. While this framework is independent of the specific predictor used, in order to show its performance, in this paper we tailor it to the predictor adopted by the CCSDS-123 lossless compression standard, obtaining an extension that allows to perform lossless, near-lossless and lossy compression in a single package. We show that the rate controller has excellent performance in terms of accuracy in the output rate, rate-distortion characteristics and is extremely competitive with respect to state-of-the-art transform coding

    Lossless Intra Coding in HEVC with 3-tap Filters

    Full text link
    This paper presents a pixel-by-pixel spatial prediction method for lossless intra coding within High Efficiency Video Coding (HEVC). A well-known previous pixel-by-pixel spatial prediction method uses only two neighboring pixels for prediction, based on the angular projection idea borrowed from block-based intra prediction in lossy coding. This paper explores a method which uses three neighboring pixels for prediction according to a two-dimensional correlation model, and the used neighbor pixels and prediction weights change depending on intra mode. To find the best prediction weights for each intra mode, a two-stage offline optimization algorithm is used and a number of implementation aspects are discussed to simplify the proposed prediction method. The proposed method is implemented in the HEVC reference software and experimental results show that the explored 3-tap filtering method can achieve an average 11.34% bitrate reduction over the default lossless intra coding in HEVC. The proposed method also decreases average decoding time by 12.7% while it increases average encoding time by 9.7%Comment: 10 pages, 7 figure
    • …
    corecore