1,016 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Prediction-enhanced Routing in Disruption-tolerant Satellite Networks

    Get PDF
    This thesis introduces a framework for enhancing DTN (Delay-/Disruption-Tolerant Networking) routing in dynamic LEO satellite constellations based on the prediction of contacts. The solution is developed with a clear focus on the requirements imposed by the 'Ring Road' use case, mandating a concept for dynamic contact prediction and its integration into a state-of-the-art routing approach. The resulting system does not restrict possible applications to the 'Ring Road,' but allows for flexible adaptation to further use cases. A thorough evaluation shows that employing proactive routing in concert with a prediction mechanism offers significantly improved performance when compared to alternative opportunistic routing techniques

    A system for improving the quality of real-time services on the internet

    Get PDF
    Real-time Internet services are becoming more popular every day, and Voice over Internet Protocol (VOIP) is arguably the most popular of these, despite the quality and reliability problems that are so characteristic of VOIP. This thesis proposes to apply a routing technique called Fully Redundant Dispersity Routing to VOIP and shows how this mitigates these problems to deliver a premium service that is more equal to traditional telephony than VOIP is currently.Fully Redundant Dispersity Routing uses the path diversity readily available in the Internet to route complete copies of the data to be communicated over multiple paths. This allows the effect of a failure on a path to be reduced, and possibly even masked completely, by the other paths. Significantly, rather than expecting changes of the Internet that will improve real-time service quality, this approach simply changes the manner in which real-time services use the Internet, leaving the Internet itself to stay the way it is.First, real VOIP traffic in a commercial call centre is measured (1) to establish a baseline of current quality characteristics against which the effects of Fully Redundant Dispersity Routing may be measured, and (2) as a source of realistic path characteristics. Simulations of various Fully Redundant Dispersity Routing systems that adopt the measured VOIP traffic characteristics then (1) show how this routing technique mitigates quality and reliability problems, and (2) quantify the quality deliverable with the VOIP traffic characteristics measured. For example, quantifying quality as a Mean Opinion Score (MOS) estimated from the measurements with the International Telecommunication Union’s E-model, slightly more than 1 in every 23 of the VOIP telephone calls measured in the call centre is likely to be perceived to be of a quality with which humans would be less than very satisfied. Simulations carried out for this thesis show that using just two paths adopting the same measurements, Fully Redundant Dispersity Routing may increase quality to reduce that proportion to slightly less than 1 in every 10 000 VOIP telephone calls
    • …
    corecore