6,656 research outputs found

    Comparison of Deep Learning and the Classical Machine Learning Algorithm for the Malware Detection

    Full text link
    Recently, Deep Learning has been showing promising results in various Artificial Intelligence applications like image recognition, natural language processing, language modeling, neural machine translation, etc. Although, in general, it is computationally more expensive as compared to classical machine learning techniques, their results are found to be more effective in some cases. Therefore, in this paper, we investigated and compared one of the Deep Learning Architecture called Deep Neural Network (DNN) with the classical Random Forest (RF) machine learning algorithm for the malware classification. We studied the performance of the classical RF and DNN with 2, 4 & 7 layers architectures with the four different feature sets, and found that irrespective of the features inputs, the classical RF accuracy outperforms the DNN.Comment: 11 Pages, 1 figur

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    DeepAPT: Nation-State APT Attribution Using End-to-End Deep Neural Networks

    Full text link
    In recent years numerous advanced malware, aka advanced persistent threats (APT) are allegedly developed by nation-states. The task of attributing an APT to a specific nation-state is extremely challenging for several reasons. Each nation-state has usually more than a single cyber unit that develops such advanced malware, rendering traditional authorship attribution algorithms useless. Furthermore, those APTs use state-of-the-art evasion techniques, making feature extraction challenging. Finally, the dataset of such available APTs is extremely small. In this paper we describe how deep neural networks (DNN) could be successfully employed for nation-state APT attribution. We use sandbox reports (recording the behavior of the APT when run dynamically) as raw input for the neural network, allowing the DNN to learn high level feature abstractions of the APTs itself. Using a test set of 1,000 Chinese and Russian developed APTs, we achieved an accuracy rate of 94.6%

    Learning Fast and Slow: PROPEDEUTICA for Real-time Malware Detection

    Full text link
    In this paper, we introduce and evaluate PROPEDEUTICA, a novel methodology and framework for efficient and effective real-time malware detection, leveraging the best of conventional machine learning (ML) and deep learning (DL) algorithms. In PROPEDEUTICA, all software processes in the system start execution subjected to a conventional ML detector for fast classification. If a piece of software receives a borderline classification, it is subjected to further analysis via more performance expensive and more accurate DL methods, via our newly proposed DL algorithm DEEPMALWARE. Further, we introduce delays to the execution of software subjected to deep learning analysis as a way to "buy time" for DL analysis and to rate-limit the impact of possible malware in the system. We evaluated PROPEDEUTICA with a set of 9,115 malware samples and 877 commonly used benign software samples from various categories for the Windows OS. Our results show that the false positive rate for conventional ML methods can reach 20%, and for modern DL methods it is usually below 6%. However, the classification time for DL can be 100X longer than conventional ML methods. PROPEDEUTICA improved the detection F1-score from 77.54% (conventional ML method) to 90.25%, and reduced the detection time by 54.86%. Further, the percentage of software subjected to DL analysis was approximately 40% on average. Further, the application of delays in software subjected to ML reduced the detection time by approximately 10%. Finally, we found and discussed a discrepancy between the detection accuracy offline (analysis after all traces are collected) and on-the-fly (analysis in tandem with trace collection). Our insights show that conventional ML and modern DL-based malware detectors in isolation cannot meet the needs of efficient and effective malware detection: high accuracy, low false positive rate, and short classification time.Comment: 17 pages, 7 figure
    • …
    corecore