43 research outputs found

    A Survey on Audio-Video based Defect Detection through Deep Learning in Railway Maintenance

    Get PDF
    Within Artificial Intelligence, Deep Learning (DL) represents a paradigm that has been showing unprecedented performance in image and audio processing by supporting or even replacing humans in defect and anomaly detection. The Railway sector is expected to benefit from DL applications, especially in predictive maintenance applications, where smart audio and video sensors can be leveraged yet kept distinct from safety-critical functions. Such separation is crucial, as it allows for improving system dependability with no impact on its safety certification. This is further supported by the development of DL in other transportation domains, such as automotive and avionics, opening for knowledge transfer opportunities and highlighting the potential of such a paradigm in railways. In order to summarize the recent state-of-the-art while inquiring about future opportunities, this paper reviews DL approaches for the analysis of data generated by acoustic and visual sensors in railway maintenance applications that have been published until August 31st, 2021. In this paper, the current state of the research is investigated and evaluated using a structured and systematic method, in order to highlight promising approaches and successful applications, as well as to identify available datasets, current limitations, open issues, challenges, and recommendations about future research directions

    Power Quality in Electrified Transportation Systems

    Get PDF
    "Power Quality in Electrified Transportation Systems" has covered interesting horizontal topics over diversified transportation technologies, ranging from railways to electric vehicles and ships. Although the attention is chiefly focused on typical railway issues such as harmonics, resonances and reactive power flow compensation, the integration of electric vehicles plays a significant role. The book is completed by some additional significant contributions, focusing on the interpretation of Power Quality phenomena propagation in railways using the fundamentals of electromagnetic theory and on electric ships in the light of the latest standardization efforts

    Design analysis of short neutral section through dynamic modelling of performance

    Get PDF
    PhD ThesisUK railway overhead line electrification employs a feature known as ‘short’ neutral section which uses insulators spliced into the contact wire to separate the electrical phases, and they are known as a cause of reliability problems. This research proposes to develop, validate and apply a hitherto unexplored approach to studying short neutral section behaviour. This research briefly initially examines the experience of British Rail with the introduction of the ceramic bead neutral section and its development during the 80s and 90s, and the subsequent introduction and development of a further proprietary type in the early 2000s, which is then assessed in detail. Using information from Network Rail, the significant failures of the main types of neutral sections are examined over a 10 year period for which adequate data exists. European practice is briefly examined. Current methods for analysing the interaction of pantograph and overhead lines are investigated, and the principles are adopted into a bespoke methodology implemented using proprietary software Ansys, rather than custom code as is current widespread practice. This methodology is constructed using finite element and multi-body principles and is successfully validated against ‘benchmarks’, in accordance with current European practice and standards. Mathematical models of a neutral section are constructed using their physical characteristics and data captured in lab tests, and the behaviour against real UK pantographs is simulated using this method. Findings are again successfully validated against real line test data. Using the result, the sensitivity of the neutral section performance to particular parameters of its construction is tested, allowing opportunities for optimisation to be identified, and improvements proposed, successfully demonstrating a (previously untried) validated methodology for examining the neutral section problem. This work has answered all its research questions

    Non-invasive dynamic condition assessment techniques for railway pantographs

    Get PDF
    The railway industry desires to improve the dependability and longevity of railway pantographs by providing more effective maintenance. The problem addressed in this thesis is the development of an effective condition-based fault detection and diagnosis procedure capable of supporting improved on–condition maintenance actions. A laboratory-based pantograph test rig established during the course of the project at the University of Birmingham has been enhanced with additional sensors and used to develop and carry out dynamic tests that provide indicators that support practical pantograph fault detection and diagnosis. A 3D multibody simulation of a Pendolino pantograph has also been developed. Three distinct dynamic tests have been identified as useful for fault detection and diagnosis: (i) a hysteresis test; (ii) a frequency-response test; and (iii) a novel changing-gradient test. These tests were carried out on a new Pendolino pantograph, a used pantograph about to go for an overhaul, the new pantograph with individual parts replaced by old components, and on the new pantograph with various changes made to, for example, the greasing or chain tightness. Through a comparison of absolute measurements and features acquired from the three dynamic tests, it was possible to extract features associated with different failure modes. Finally, with a focus on the practical constraints of depot operations, a condition-based pantograph fault detection and diagnosis routine is proposed that draws on decision tree analysis. This novel testing procedure integrates the three dynamic tests and is able to identify and locate common failure modes on pantographs. The approach is considered to be appropriate for an application using an adapted version of the test rig in a depot setting

    Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference

    Full text link
    The 6th ECCOMAS Young Investigators Conference YIC2021 will take place from July 7th through 9th, 2021 at Universitat Politècnica de València, Spain. The main objective is to bring together in a relaxed environment young students, researchers and professors from all areas related with computational science and engineering, as in the previous YIC conferences series organized under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Participation of senior scientists sharing their knowledge and experience is thus critical for this event.YIC 2021 is organized at Universitat Politécnica de València by the Sociedad Española de Métodos Numéricos en Ingeniería (SEMNI) and the Sociedad Española de Matemática Aplicada (SEMA). It is promoted by the ECCOMAS.The main goal of the YIC 2021 conference is to provide a forum for presenting and discussing the current state-of-the-art achievements on Computational Methods and Applied Sciences,including theoretical models, numerical methods, algorithmic strategies and challenging engineering applications.Nadal Soriano, E.; Rodrigo Cardiel, C.; Martínez Casas, J. (2022). Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. https://doi.org/10.4995/YIC2021.2021.15320EDITORIA

    Vibration Suppression in Flexible Structures using Hybrid Active and Semi-active Control

    Get PDF
    This thesis presents a new hybrid active and semi-active control method for vibration suppression in flexible structures. The method uses a combination of a semi-active device and an active control actuator situated elsewhere in the structure to suppress vibrations. The key novelty is to use the hybrid controller to enable the semi-active device to achieve a performance as close to a fully active device as possible. This is accomplished by ensuring that the active actuator can assist the semi-active device in the regions where energy is required. Also, the hybrid active and semi-active controller is designed to minimise the switching of the semi-active controller. The control framework used is the immersion and invariance control technique in combination with a sliding mode control. A two degree-of-freedom system with lightly damped resonances is used as an example system. Both numerical and experimental results are generated for this system and then compared as part of a validation study. The experimental system uses hardware-in-the-loop simulation to simulate the effect of both the degrees-of-freedom. The results show that the concept is viable both numerically and experimentally, and improved vibration suppression results can be obtained for the semi-active device that approaches the performance of an active device. To illustrate the effectiveness of the proposed hybrid controller, it is implemented to keep the contact force constant in the pantograph-catenary system of high-speed trains. A detailed derivation is given after which the simulation results are presented. Then a method to design a reduced order observer using an invariant manifold approach is proposed. The main advantage of this approach is that it enables a systematic design approach, and (unlike most nonlinear observer design methods), it can be generalised over a larger class of nonlinear systems. The method uses specific mapping functions in a way that minimises the error dynamics close to zero. Another important aspect is the robustness property which is due to the manifold attractivity: an important feature when an observer is used in a closed loop control system. The observer design is validated using both numerical simulations and hardware-in-the-loop testing. The proposed observer is then compared with a very well known nonlinear observer based on the off-line solution of the Riccati equation for systems with Lipschitz type nonlinearity. In all cases, the performance of the proposed observer is shown to be excellent

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Running Dynamics of Rail Vehicles

    Get PDF
    The investigation of rail vehicle running dynamics plays an important role in the more than 200 year development of railway vehicles and infrastructure. Currently, there are a number of new requirements for rail transport associated with the reduced environmental impact, energy consumption and wear, whilst increasing train speed and passenger comfort. Therefore, the running dynamics of rail vehicles is still a research topic that requires improved simulation tools and experimental procedures. The book focuses on the current research topics in railway vehicles running dynamics. Special attention is given to high-speed railway transport, acoustic and vibrational impact of railway transport to the surroundings, optimization of energy supply systems for railway transport, traction drives optimization and wear of wheels and rails

    Wireless Sensor Networks for Condition Monitoring in the Railway Industry : a Survey

    Get PDF
    In recent years, the range of sensing technologies has expanded rapidly, whereas sensor devices have become cheaper. This has led to a rapid expansion in condition monitoring of systems, structures, vehicles, and machinery using sensors. Key factors are the recent advances in networking technologies such as wireless communication and mobile adhoc networking coupled with the technology to integrate devices. Wireless sensor networks (WSNs) can be used for monitoring the railway infrastructure such as bridges, rail tracks, track beds, and track equipment along with vehicle health monitoring such as chassis, bogies, wheels, and wagons. Condition monitoring reduces human inspection requirements through automated monitoring, reduces maintenance through detecting faults before they escalate, and improves safety and reliability. This is vital for the development, upgrading, and expansion of railway networks. This paper surveys these wireless sensors network technology for monitoring in the railway industry for analyzing systems, structures, vehicles, and machinery. This paper focuses on practical engineering solutions, principally,which sensor devices are used and what they are used for; and the identification of sensor configurations and network topologies. It identifies their respective motivations and distinguishes their advantages and disadvantages in a comparative review
    corecore