1,403 research outputs found

    Two heuristics for calculating a shared risk link group disjoint set of paths of min-sum cost

    Get PDF
    A shared risk link group (SRLG) is a set of links which share a common risk of failure. Routing protocols in Generalized MultiProtocol Label Switching, using distributed SRLG information, can calculate paths avoiding certain SRLGs. For single SRLG failure an end-to-end SRLG-disjoint path pair can be calculated, but to ensure connection in the event of multiple SRLG failures a set with more than two end-to-end SRLG-disjoint paths should be used. Two heuristic, the Conflicting SRLG-Exclusion Min Sum (CoSE-MS) and the Iterative Modified Suurballes’s Heuristic (IMSH), for calculating node and SRLG-disjoint path pairs, which use the Modified Suurballes’s Heuristic, are reviewed and new versions (CoSE-MScd and IMSHd) are proposed, which may improve the number of obtained optimal solutions. Moreover two new heuristics are proposed: kCoSE-MScd and kIMSHd, to calculate a set of k node and SRLG-disjoint paths, seeking to minimize its total cost. To the best of our knowledge these heuristics are a first proposal for seeking a set of k ðk[2Þ node and SRLG-disjoint paths of minimal additive cost. The performance of the proposed heuristics is evaluated using a real network structure, where SRLGs were randomly defined. The number of solutions found, the percentage of optimal solutions and the relative error of the sub-optimal solutions are presented. Also the CPU time for solving the problem in a path computation element is reported

    Optimization of Free Space Optical Wireless Network for Cellular Backhauling

    Full text link
    With densification of nodes in cellular networks, free space optic (FSO) connections are becoming an appealing low cost and high rate alternative to copper and fiber as the backhaul solution for wireless communication systems. To ensure a reliable cellular backhaul, provisions for redundant, disjoint paths between the nodes must be made in the design phase. This paper aims at finding a cost-effective solution to upgrade the cellular backhaul with pre-deployed optical fibers using FSO links and mirror components. Since the quality of the FSO links depends on several factors, such as transmission distance, power, and weather conditions, we adopt an elaborate formulation to calculate link reliability. We present a novel integer linear programming model to approach optimal FSO backhaul design, guaranteeing KK-disjoint paths connecting each node pair. Next, we derive a column generation method to a path-oriented mathematical formulation. Applying the method in a sequential manner enables high computational scalability. We use realistic scenarios to demonstrate our approaches efficiently provide optimal or near-optimal solutions, and thereby allow for accurately dealing with the trade-off between cost and reliability

    Network Design with Coverage Costs

    Get PDF
    We study network design with a cost structure motivated by redundancy in data traffic. We are given a graph, g groups of terminals, and a universe of data packets. Each group of terminals desires a subset of the packets from its respective source. The cost of routing traffic on any edge in the network is proportional to the total size of the distinct packets that the edge carries. Our goal is to find a minimum cost routing. We focus on two settings. In the first, the collection of packet sets desired by source-sink pairs is laminar. For this setting, we present a primal-dual based 2-approximation, improving upon a logarithmic approximation due to Barman and Chawla (2012). In the second setting, packet sets can have non-trivial intersection. We focus on the case where each packet is desired by either a single terminal group or by all of the groups, and the graph is unweighted. For this setting we present an O(log g)-approximation. Our approximation for the second setting is based on a novel spanner-type construction in unweighted graphs that, given a collection of g vertex subsets, finds a subgraph of cost only a constant factor more than the minimum spanning tree of the graph, such that every subset in the collection has a Steiner tree in the subgraph of cost at most O(log g) that of its minimum Steiner tree in the original graph. We call such a subgraph a group spanner.Comment: Updated version with additional result

    An effective algorithm for obtaining the whole set of minimal cost pairs of disjoint paths with dual arc costs

    Get PDF
    In telecommunication networks design the problem of obtaining optimal (arc or node) disjoint paths, for increasing network reliability, is extremely important. The problem of calculating kc disjoint paths from s to t (two distinct nodes), in a network with kc different (arbitrary) costs on every arc such that the total cost of the paths is minimised, is NP-complete even for kc = 2. When kc = 2 these networks are usually designated as dual arc cost networks. In this paper we propose an exact algorithm for finding the whole set of arc-disjoint path pairs, with minimal cost in a network with dual arc costs. The correctness of the algorithm is based on a condition which guarantees that the optimal path pair cost has been obtained and on a proposition which guarantees that at the end of the algorithm all the optimal pairs have been obtained. The optimality condition is based on the calculation of upper and lower bounds on the optimal cost. Extensive experimentation is presented to show the effectiveness of the algorithm

    Constrained shortest paths for QoS routing and path protection in communication networks.

    Get PDF
    The CSDP (k) problem requires the selection of a set of k > 1 link-disjoint paths with minimum total cost and with total delay bounded by a given upper bound. This problem arises in the context of provisioning paths in a network that could be used to provide resilience to link failures. Again we studied the LP relaxation of the ILP formulation of the problem from the primal perspective and proposed an approximation algorithm.We have studied certain combinatorial optimization problems that arise in the context of two important problems in computer communication networks: end-to-end Quality of Service (QoS) and fault tolerance. These problems can be modeled as constrained shortest path(s) selection problems on networks with each of their links associated with additive weights representing the cost, delay etc.The problems considered above assume that the network status is known and accurate. However, in real networks, this assumption is not realistic. So we considered the QoS route selection problem under inaccurate state information. Here the goal is to find a path with the highest probability that satisfies a given delay upper bound. We proposed a pseudo-polynomial time approximation algorithm, a fully polynomial time approximation scheme, and a strongly polynomial time heuristic for this problem.Finally we studied the constrained shortest path problem with multiple additive constraints. Using the LARAC algorithm as a building block and combining ideas from mathematical programming, we proposed a new approximation algorithm.First we studied the QoS single route selection problem, i.e., the constrained shortest path (CSP) problem. The goal of the CSP problem is to identify a minimum cost route which incurs a delay less than a specified bound. It can be formulated as an integer linear programming (ILP) problem which is computationally intractable. The LARAC algorithm reported in the literature is based on the dual of the linear programming relaxation of the ILP formulation and gives an approximate solution. We proposed two new approximation algorithms solving the dual problem. Next, we studied the CSP problem using the primal simplex method and exploiting certain structural properties of networks. This led to a novel approximation algorithm

    Improved Algorithms for the Steiner Problem in Networks

    Get PDF
    We present several new techniques for dealing with the Steiner problem in (undirected) networks. We consider them as building blocks of an exact algorithm, but each of them could also be of interest in its own right. First, we consider some relaxations of integer programming formulations of this problem and investigate different methods for dealing with these relaxations, not only to obtain lower bounds, but also to get additional information which is used in the computation of upper bounds and in reduction techniques. Then, we modify some known reduction tests and introduce some new ones. We integrate some of these tests into a package with a small worst case time which achieves impressive reductions on a wide range of instances. On the side of upper bounds, we introduce the new concept of heuristic reductions. On the basis of this concept, we develop heuristics that achieve sharper upper bounds than the strongest known heuristics for this problem despite running times which are smaller by orders of magnitude. Finally, we integrate these blocks into an exact algorithm. We present computational results on a variety of benchmark instances. The results are clearly superior to those of all other exact algorithms known to the authors

    Single-Sink Network Design with Vertex Connectivity Requirements

    Get PDF
    We study single-sink network design problems in undirected graphs with vertex connectivity requirements. The input to these problems is an edge-weighted undirected graph G=(V,E)G=(V,E), a sink/root vertex rr, a set of terminals TsubseteqVT subseteq V, and integer kk. The goal is to connect each terminal tinTt in T to rr via kk emph{vertex-disjoint} paths. In the {em connectivity} problem, the objective is to find a min-cost subgraph of GG that contains the desired paths. There is a 22-approximation for this problem when kle2k le 2 cite{FleischerJW} but for kge3k ge 3, the first non-trivial approximation was obtained in the recent work of Chakraborty, Chuzhoy and Khanna cite{ChakCK08}; they describe and analyze an algorithm with an approximation ratio of O(kO(k2)log4n)O(k^{O(k^2)}log^4 n) where n=∣V∣n=|V|. In this paper, inspired by the results and ideas in cite{ChakCK08}, we show an O(kO(k)log∣T∣)O(k^{O(k)}log |T|)-approximation bound for a simple greedy algorithm. Our analysis is based on the dual of a natural linear program and is of independent technical interest. We use the insights from this analysis to obtain an O(kO(k)log∣T∣)O(k^{O(k)}log |T|)-approximation for the more general single-sink {em rent-or-buy} network design problem with vertex connectivity requirements. We further extend the ideas to obtain a poly-logarithmic approximation for the single-sink {em buy-at-bulk} problem when k=2k=2 and the number of cable-types is a fixed constant; we believe that this should extend to any fixed kk. We also show that for the non-uniform buy-at-bulk problem, for each fixed kk, a small variant of a simple algorithm suggested by Charikar and Kargiazova cite{CharikarK05} for the case of k=1k=1 gives an 2O(sqrtlog∣T∣)2^{O(sqrt{log |T|})} approximation for larger kk. These results show that for each of these problems, simple and natural algorithms that have been developed for k=1k=1 have good performance for small k>1k > 1

    Analysis and optimization of highly reliable systems

    Get PDF
    In the field of network design, the survivability property enables the network to maintain a certain level of network connectivity and quality of service under failure conditions. In this thesis, survivability aspects of communication systems are studied. Aspects of reliability and vulnerability of network design are also addressed. The contributions are three-fold. First, a Hop Constrained node Survivable Network Design Problem (HCSNDP) with optional (Steiner) nodes is modelled. This kind of problems are N P-Hard. An exact integer linear model is built, focused on networks represented by graphs without rooted demands, considering costs in arcs and in Steiner nodes. In addition to the exact model, the calculation of lower and upper bounds to the optimal solution is included. Models were tested over several graphs and instances, in order to validate it in cases with known solution. An Approximation Algorithm is also developed in order to address a particular case of SNDP: the Two Node Survivable Star Problem (2NCSP) with optional nodes. This problem belongs to the class of N P-Hard computational problems too. Second, the research is focused on cascading failures and target/random attacks. The Graph Fragmentation Problem (GFP) is the result of a worst case analysis of a random attack. A fixed number of individuals for protection can be chosen, and a non-protected target node immediately destroys all reachable nodes. The goal is to minimize the expected number of destroyed nodes in the network. This problem belongs to the N P-Hard class. A mathematical programming formulation is introduced and exact resolution for small instances as well as lower and upper bounds to the optimal solution. In addition to exact methods, we address the GFP by several approaches: metaheuristics, approximation algorithms, polytime methods for specific instances and exact methods in exponential time. Finally, the concept of separability in stochastic binary systems is here introduced. Stochastic Binary Systems (SBS) represent a mathematical model of a multi-component on-off system subject to independent failures. The reliability evaluation of an SBS belongs to the N P-Hard class. Therefore, we fully characterize separable systems using Han-Banach separation theorem for convex sets. Using this new concept of separable systems and Markov inequality, reliability bounds are provided for arbitrary SBS

    Optimization of Free Space Optical Wireless Network for Cellular Backhauling

    Full text link
    • …
    corecore