993 research outputs found

    Matroidal structure of generalized rough sets based on symmetric and transitive relations

    Full text link
    Rough sets are efficient for data pre-process in data mining. Lower and upper approximations are two core concepts of rough sets. This paper studies generalized rough sets based on symmetric and transitive relations from the operator-oriented view by matroidal approaches. We firstly construct a matroidal structure of generalized rough sets based on symmetric and transitive relations, and provide an approach to study the matroid induced by a symmetric and transitive relation. Secondly, this paper establishes a close relationship between matroids and generalized rough sets. Approximation quality and roughness of generalized rough sets can be computed by the circuit of matroid theory. At last, a symmetric and transitive relation can be constructed by a matroid with some special properties.Comment: 5 page

    Implicator-conjunctor based models of fuzzy rough sets: definitions and properties

    Get PDF
    Ever since the first hybrid fuzzy rough set model was proposed in the early 1990' s, many researchers have focused on the definition of the lower and upper approximation of a fuzzy set by means of a fuzzy relation. In this paper, we review those proposals which generalize the logical connectives and quantifiers present in the rough set approximations by means of corresponding fuzzy logic operations. We introduce a general model which encapsulates all of these proposals, evaluate it w.r.t. a number of desirable properties, and refine the existing axiomatic approach to characterize lower and upper approximation operators

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    Implicator-Conjunctor Based Models of Fuzzy Rough Sets: Definitions and Properties

    Get PDF
    Ever since the first hybrid fuzzy rough set model was pro- posed in the early 1990¿s, many researchers have focused on the definition of the lower and upper approximation of a fuzzy set by means of a fuzzy relation. In this paper, we review those proposals which generalize the logical connectives and quantifiers present in the rough set approxima- tions by means of corresponding fuzzy logic operations. We introduce a general model which encapsulates all of these proposals, evaluate it w.r.t. a number of desirable properties, and refine the existing axiomatic approach to characterize lower and upper approximation operators. © 2013 Springer-Verlag.This work was partially supported by the Spanish Ministry of Science and Technology under Project TIN2011-28488. Lluis Godo has been partially supported by the MINECO Project TIN2012-39348-C02-01.Peer Reviewe

    Some characteristics of matroids through rough sets

    Full text link
    At present, practical application and theoretical discussion of rough sets are two hot problems in computer science. The core concepts of rough set theory are upper and lower approximation operators based on equivalence relations. Matroid, as a branch of mathematics, is a structure that generalizes linear independence in vector spaces. Further, matroid theory borrows extensively from the terminology of linear algebra and graph theory. We can combine rough set theory with matroid theory through using rough sets to study some characteristics of matroids. In this paper, we apply rough sets to matroids through defining a family of sets which are constructed from the upper approximation operator with respect to an equivalence relation. First, we prove the family of sets satisfies the support set axioms of matroids, and then we obtain a matroid. We say the matroids induced by the equivalence relation and a type of matroid, namely support matroid, is induced. Second, through rough sets, some characteristics of matroids such as independent sets, support sets, bases, hyperplanes and closed sets are investigated.Comment: 13 page

    A comprehensive study of implicator-conjunctor based and noise-tolerant fuzzy rough sets: definitions, properties and robustness analysis

    Get PDF
    © 2014 Elsevier B.V. Both rough and fuzzy set theories offer interesting tools for dealing with imperfect data: while the former allows us to work with uncertain and incomplete information, the latter provides a formal setting for vague concepts. The two theories are highly compatible, and since the late 1980s many researchers have studied their hybridization. In this paper, we critically evaluate most relevant fuzzy rough set models proposed in the literature. To this end, we establish a formally correct and unified mathematical framework for them. Both implicator-conjunctor-based definitions and noise-tolerant models are studied. We evaluate these models on two different fronts: firstly, we discuss which properties of the original rough set model can be maintained and secondly, we examine how robust they are against both class and attribute noise. By highlighting the benefits and drawbacks of the different fuzzy rough set models, this study appears a necessary first step to propose and develop new models in future research.Lynn D’eer has been supported by the Ghent University Special Research Fund, Chris Cornelis was partially supported by the Spanish Ministry of Science and Technology under the project TIN2011-28488 and the Andalusian Research Plans P11-TIC-7765 and P10-TIC-6858, and by project PYR-2014-8 of the Genil Program of CEI BioTic GRANADA and Lluis Godo has been partially supported by the Spanish MINECO project EdeTRI TIN2012-39348-C02-01Peer Reviewe

    Covering rough sets based on neighborhoods: An approach without using neighborhoods

    Get PDF
    Rough set theory, a mathematical tool to deal with inexact or uncertain knowledge in information systems, has originally described the indiscernibility of elements by equivalence relations. Covering rough sets are a natural extension of classical rough sets by relaxing the partitions arising from equivalence relations to coverings. Recently, some topological concepts such as neighborhood have been applied to covering rough sets. In this paper, we further investigate the covering rough sets based on neighborhoods by approximation operations. We show that the upper approximation based on neighborhoods can be defined equivalently without using neighborhoods. To analyze the coverings themselves, we introduce unary and composition operations on coverings. A notion of homomorphismis provided to relate two covering approximation spaces. We also examine the properties of approximations preserved by the operations and homomorphisms, respectively.Comment: 13 pages; to appear in International Journal of Approximate Reasonin
    • …
    corecore