5,837 research outputs found

    Combined state and parameter estimation for Hammerstein systems with time-delay using the Kalman filtering

    Get PDF
    This paper discusses the state and parameter estimation problem for a class of Hammerstein state space systems with time-delay. Both the process noise and the measurement noise are considered in the system. Based on the observable canonical state space form and the key term separation, a pseudo-linear regressive identification model is obtained. For the unknown states in the information vector, the Kalman filter is used to search for the optimal state estimates. A Kalman-filter based least squares iterative and a recursive least squares algorithms are proposed. Extending the information vector to include the latest information terms which are missed for the time-delay, the Kalman-filter based recursive extended least squares algorithm is derived to obtain the estimates of the unknown time-delay, parameters and states. The numerical simulation results are given to illustrate the effectiveness of the proposed algorithms

    Least squares-based iterative identification methods for linear-in-parameters systems using the decomposition technique

    Get PDF
    By extending the least squares-based iterative (LSI) method, this paper presents a decomposition-based LSI (D-LSI) algorithm for identifying linear-in-parameters systems and an interval-varying D-LSI algorithm for handling the identification problems of missing-data systems. The basic idea is to apply the hierarchical identification principle to decompose the original system into two fictitious sub-systems and then to derive new iterative algorithms to estimate the parameters of each sub-system. Compared with the LSI algorithm and the interval-varying LSI algorithm, the decomposition-based iterative algorithms have less computational load. The numerical simulation results demonstrate that the proposed algorithms work quite well

    Range filtering for sequential GPS receivers with external sensor augmentation

    Get PDF
    The filtering of the satellite range and range-rate measurements from single channel sequential Global Positioning System receivers is usually done with an extended Kalman filter which has state variables defined in terms of an orthogonal navigation reference frame. An attractive suboptimal alternative is range-domain filtering, in which the individual satellite measurements are filtered separately before they are combined for the navigation solution. The main advantages of range-domain filtering are decreased processing and storage requirements and simplified tuning. Several range filter mechanization alternatives are presented, along with an innovative approach for combining the filtered range-domain quantities to determine the navigation state estimate. In addition, a method is outlined for incorporating measurements from auxiliary sensors such as altimeters into the navigation state estimation scheme similarly to the satellite measurements. A method is also described for incorporating inertial measurements into the navigation state estimator as a process driver

    Bias compensation recursive algorithm for dual-rate rational models

    Get PDF
    © The Institution of Engineering and Technology 2018. In dual-rate rational systems, some output data are missing (unmeasurable) to make the traditional recursive least squares (RLS) parameter estimation algorithms invalid. In order to overcome this difficulty, this study develops a bias compensation RLS algorithm for estimating the missing outputs and then the model parameters. The algorithm based on auxiliary model and particle filter has four steps: (i) to establish an auxiliary model to estimate unmeasurable outputs, (ii) to compensate bias induced by correlated noise, (iii) to add a filter to improve estimation accuracy of the unmeasurable outputs and (iv) to obtain an unbiased parameter estimation. Three examples are selected for simulation demonstrations to give further guarantees on the usefulness of the proposed algorithms. The comparative studies show that the bias compensation RLS is more effective for such systems with dual-rate input and output data

    Gradient-based particle filter algorithm for an ARX model with nonlinear communication output

    Get PDF
    A stochastic gradient (SG)-based particle filter (SG-PF) algorithm is developed for an ARX model with nonlinear communication output in this paper. This ARX model consists of two submodels, one is a linear ARX model and the other is a nonlinear output model. The process outputs (outputs of the linear submodel) transmitted over a communication channel are unmeasurable, while the communication outputs (outputs of the nonlinear submodel) are available, and both of the twotype outputs are contaminated by white noises. Based on the rich input data and the available communication output data, a SG-PF algorithm is proposed to estimate the unknown process outputs and parameters of the ARX model. Furthermore, a direct weight optimization method and the Epanechnikov kernel method are extended to modify the particle filter when the measurement noise is a Gaussian noise with unknown variance and the measurement noise distribution is unknown. The simulation results demonstrate that the SG-PF algorithm is effective

    Partially coupled gradient estimation algorithm for multivariable equation-error autoregressive moving average systems using the data filtering technique

    Get PDF
    System identification provides many convenient and useful methods for engineering modelling. This study targets the parameter identification problems for multivariable equation-error autoregressive moving average systems. To reduce the influence of the coloured noises on the parameter estimation, the data filtering technique is adopted to filter the input and output data, and to transform the original system into a filtered system with white noises. Then the filtered system is decomposed into several subsystems and a filtering-based partially-coupled generalised extended stochastic gradient algorithm is developed via the coupling concept. In contrast to the multivariable generalised extended stochastic gradient algorithm, the proposed algorithm can give more accurate parameter estimates. Finally, the effectiveness of the proposed algorithm is well demonstrated by simulation examples

    Parameter and State Estimator for State Space Models

    Get PDF
    This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective

    Least Squares Based and Two-Stage Least Squares Based Iterative Estimation Algorithms for H-FIR-MA Systems

    Get PDF
    This paper studies the identification of Hammerstein finite impulse response moving average (H-FIR-MA for short) systems. A new two-stage least squares iterative algorithm is developed to identify the parameters of the H-FIR-MA systems. The simulation cases indicate the efficiency of the proposed algorithms

    Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition

    Get PDF
    This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition-based least squares iterative algorithm is presented for estimating the parameter vector in each subsystem. Moreover, a data filtering-based decomposition least squares iterative algorithm is proposed. The simulation results indicate that the data filtering-based least squares iterative algorithm can generate more accurate parameter estimates than the least squares iterative algorithm
    corecore