1,929 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Machine learning applications in search algorithms for gravitational waves from compact binary mergers

    Get PDF
    Gravitational waves from compact binary mergers are now routinely observed by Earth-bound detectors. These observations enable exciting new science, as they have opened a new window to the Universe. However, extracting gravitational-wave signals from the noisy detector data is a challenging problem. The most sensitive search algorithms for compact binary mergers use matched filtering, an algorithm that compares the data with a set of expected template signals. As detectors are upgraded and more sophisticated signal models become available, the number of required templates will increase, which can make some sources computationally prohibitive to search for. The computational cost is of particular concern when low-latency alerts should be issued to maximize the time for electromagnetic follow-up observations. One potential solution to reduce computational requirements that has started to be explored in the last decade is machine learning. However, different proposed deep learning searches target varying parameter spaces and use metrics that are not always comparable to existing literature. Consequently, a clear picture of the capabilities of machine learning searches has been sorely missing. In this thesis, we closely examine the sensitivity of various deep learning gravitational-wave search algorithms and introduce new methods to detect signals from binary black hole and binary neutron star mergers at previously untested statistical confidence levels. By using the sensitive distance as our core metric, we allow for a direct comparison of our algorithms to state-of-the-art search pipelines. As part of this thesis, we organized a global mock data challenge to create a benchmark for machine learning search algorithms targeting compact binaries. This way, the tools developed in this thesis are made available to the greater community by publishing them as open source software. Our studies show that, depending on the parameter space, deep learning gravitational-wave search algorithms are already competitive with current production search pipelines. We also find that strategies developed for traditional searches can be effectively adapted to their machine learning counterparts. In regions where matched filtering becomes computationally expensive, available deep learning algorithms are also limited in their capability. We find reduced sensitivity to long duration signals compared to the excellent results for short-duration binary black hole signals

    The Application of Data Analytics Technologies for the Predictive Maintenance of Industrial Facilities in Internet of Things (IoT) Environments

    Get PDF
    In industrial production environments, the maintenance of equipment has a decisive influence on costs and on the plannability of production capacities. In particular, unplanned failures during production times cause high costs, unplanned downtimes and possibly additional collateral damage. Predictive Maintenance starts here and tries to predict a possible failure and its cause so early that its prevention can be prepared and carried out in time. In order to be able to predict malfunctions and failures, the industrial plant with its characteristics, as well as wear and ageing processes, must be modelled. Such modelling can be done by replicating its physical properties. However, this is very complex and requires enormous expert knowledge about the plant and about wear and ageing processes of each individual component. Neural networks and machine learning make it possible to train such models using data and offer an alternative, especially when very complex and non-linear behaviour is evident. In order for models to make predictions, as much data as possible about the condition of a plant and its environment and production planning data is needed. In Industrial Internet of Things (IIoT) environments, the amount of available data is constantly increasing. Intelligent sensors and highly interconnected production facilities produce a steady stream of data. The sheer volume of data, but also the steady stream in which data is transmitted, place high demands on the data processing systems. If a participating system wants to perform live analyses on the incoming data streams, it must be able to process the incoming data at least as fast as the continuous data stream delivers it. If this is not the case, the system falls further and further behind in processing and thus in its analyses. This also applies to Predictive Maintenance systems, especially if they use complex and computationally intensive machine learning models. If sufficiently scalable hardware resources are available, this may not be a problem at first. However, if this is not the case or if the processing takes place on decentralised units with limited hardware resources (e.g. edge devices), the runtime behaviour and resource requirements of the type of neural network used can become an important criterion. This thesis addresses Predictive Maintenance systems in IIoT environments using neural networks and Deep Learning, where the runtime behaviour and the resource requirements are relevant. The question is whether it is possible to achieve better runtimes with similarly result quality using a new type of neural network. The focus is on reducing the complexity of the network and improving its parallelisability. Inspired by projects in which complexity was distributed to less complex neural subnetworks by upstream measures, two hypotheses presented in this thesis emerged: a) the distribution of complexity into simpler subnetworks leads to faster processing overall, despite the overhead this creates, and b) if a neural cell has a deeper internal structure, this leads to a less complex network. Within the framework of a qualitative study, an overall impression of Predictive Maintenance applications in IIoT environments using neural networks was developed. Based on the findings, a novel model layout was developed named Sliced Long Short-Term Memory Neural Network (SlicedLSTM). The SlicedLSTM implements the assumptions made in the aforementioned hypotheses in its inner model architecture. Within the framework of a quantitative study, the runtime behaviour of the SlicedLSTM was compared with that of a reference model in the form of laboratory tests. The study uses synthetically generated data from a NASA project to predict failures of modules of aircraft gas turbines. The dataset contains 1,414 multivariate time series with 104,897 samples of test data and 160,360 samples of training data. As a result, it could be proven for the specific application and the data used that the SlicedLSTM delivers faster processing times with similar result accuracy and thus clearly outperforms the reference model in this respect. The hypotheses about the influence of complexity in the internal structure of the neuronal cells were confirmed by the study carried out in the context of this thesis

    Learning and Control of Dynamical Systems

    Get PDF
    Despite the remarkable success of machine learning in various domains in recent years, our understanding of its fundamental limitations remains incomplete. This knowledge gap poses a grand challenge when deploying machine learning methods in critical decision-making tasks, where incorrect decisions can have catastrophic consequences. To effectively utilize these learning-based methods in such contexts, it is crucial to explicitly characterize their performance. Over the years, significant research efforts have been dedicated to learning and control of dynamical systems where the underlying dynamics are unknown or only partially known a priori, and must be inferred from collected data. However, much of these classical results have focused on asymptotic guarantees, providing limited insights into the amount of data required to achieve desired control performance while satisfying operational constraints such as safety and stability, especially in the presence of statistical noise. In this thesis, we study the statistical complexity of learning and control of unknown dynamical systems. By utilizing recent advances in statistical learning theory, high-dimensional statistics, and control theoretic tools, we aim to establish a fundamental understanding of the number of samples required to achieve desired (i) accuracy in learning the unknown dynamics, (ii) performance in the control of the underlying system, and (iii) satisfaction of the operational constraints such as safety and stability. We provide finite-sample guarantees for these objectives and propose efficient learning and control algorithms that achieve the desired performance at these statistical limits in various dynamical systems. Our investigation covers a broad range of dynamical systems, starting from fully observable linear dynamical systems to partially observable linear dynamical systems, and ultimately, nonlinear systems. We deploy our learning and control algorithms in various adaptive control tasks in real-world control systems and demonstrate their strong empirical performance along with their learning, robustness, and stability guarantees. In particular, we implement one of our proposed methods, Fourier Adaptive Learning and Control (FALCON), on an experimental aerodynamic testbed under extreme turbulent flow dynamics in a wind tunnel. The results show that FALCON achieves state-of-the-art stabilization performance and consistently outperforms conventional and other learning-based methods by at least 37%, despite using 8 times less data. The superior performance of FALCON arises from its physically and theoretically accurate modeling of the underlying nonlinear turbulent dynamics, which yields rigorous finite-sample learning and performance guarantees. These findings underscore the importance of characterizing the statistical complexity of learning and control of unknown dynamical systems.</p

    Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial

    Full text link
    On top of machine learning models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and management. The safety and reliability improvement of ML models empowered by UQ has the potential to significantly facilitate the broad adoption of ML solutions in high-stakes decision settings, such as healthcare, manufacturing, and aviation, to name a few. In this tutorial, we aim to provide a holistic lens on emerging UQ methods for ML models with a particular focus on neural networks and the applications of these UQ methods in tackling engineering design as well as prognostics and health management problems. Toward this goal, we start with a comprehensive classification of uncertainty types, sources, and causes pertaining to UQ of ML models. Next, we provide a tutorial-style description of several state-of-the-art UQ methods: Gaussian process regression, Bayesian neural network, neural network ensemble, and deterministic UQ methods focusing on spectral-normalized neural Gaussian process. Established upon the mathematical formulations, we subsequently examine the soundness of these UQ methods quantitatively and qualitatively (by a toy regression example) to examine their strengths and shortcomings from different dimensions. Then, we review quantitative metrics commonly used to assess the quality of predictive uncertainty in classification and regression problems. Afterward, we discuss the increasingly important role of UQ of ML models in solving challenging problems in engineering design and health prognostics. Two case studies with source codes available on GitHub are used to demonstrate these UQ methods and compare their performance in the life prediction of lithium-ion batteries at the early stage and the remaining useful life prediction of turbofan engines

    Coordinate-Descent Augmented Lagrangian Methods for Interpretative and Adaptive Model Predictive Control

    Get PDF
    Model predictive control (MPC) of nonlinear systems suffers a trade-off between model accuracy and real-time compu- tational burden. This thesis presents an interpretative and adaptive MPC (IA-MPC) framework for nonlinear systems, which is related to the widely used approximation method based on successive linearization MPC and Extended Kalman Filtering (SL-MPC-EKF). First, we introduce a solution algo- rithm for linear MPC that is based on the combination of Co- ordinate Descent and Augmented Lagrangian (CDAL) ideas. The CDAL algorithm enjoys three features: (i) it is construction-free, in that it avoids explicitly constructing the quadratic pro-gramming (QP) problem associated with MPC; (ii) is matrix-free, as it avoids multiplications and factorizations of matri-ces; and (iii) is library-free, as it can be simply coded without any library dependency, 90-lines of C-code in our implemen-tation. We specialize the algorithm for both state-space for-mulations of MPC and formulations based on AutoRegres-sive with eXogenous terms models (CDAL-ARX). The thesis also presents a rapid-prototype MPC tool based on the gPROMS platform, in which the qpOASES and CDAL algorithm was integrated. In addition, based on an equivalence between SS-based and ARX-based MPC problems we show,we investigate the relation between the proposed IA-MPC and the classical SL-MPC-EKF method. Finally, we test and show the effectiveness of the proposed IA-MPC frameworkon four typical nonlinear MPC benchmark examples

    Navigation Sensor Stochastic Error Modeling and Nonlinear Estimation for Low-Cost Land Vehicle Navigation

    Get PDF
    The increasing use of low-cost inertial sensors in various mass-market applications necessitates their accurate stochastic modeling. Such task faces challenges due to outliers in the sensor measurements caused by internal and/or external factors. To optimize the navigation performance, robust estimation techniques are required to reduce the influence of outliers to the stochastic modeling process. The Generalized Method of Wavelet Moments (GMWM) and its Multi-signal extensions (MS-GMWM) represent the latest trend in the field of inertial sensor error stochastic analysis, they are capable of efficiently modeling the highly complex random errors displayed by low-cost and consumer-grade inertial sensors and provide very advantageous guarantees for the statistical properties of their estimation products. On the other hand, even though a robust version exists (RGMWM) for the single-signal method in order to protect the estimation process from the influence of outliers, their detection remains a challenging task, while such attribute has not yet been bestowed in the multi-signal approach. Moreover, the current implementation of the GMWM algorithm can be computationally intensive and does not provide the simplest (composite) model. In this work, a simplified implementation of the GMWM-based algorithm is presented along with techniques to reduce the complexity of the derived stochastic model under certain conditions. Also, it is shown via simulations that using the RGMWM every time, without the need for contamination existence confirmation, is a worthwhile trade-off between reducing the outlier effects and decreasing the estimator efficiency. Generally, stochastic modeling techniques, including the GMWM, make use of individual static signals for inference. However, it has been observed that when multiple static signal replicates are collected under the same conditions, they maintain the same model structure but exhibit variations in parameter values, a fact that called for the MS-GMWM. Here, a robust multi-signal method is introduced, based on the established GMWM framework and the Average Wavelet Variance (AWV) estimator, which encompasses two robustness levels: one for protection against outliers in each considered replicate and one to safeguard the estimation against the collection of signal replicates with significantly different behaviour than the majority. From that, two estimators are formulated, the Singly Robust AWV (SR-AWV) and the Doubly Robust (DR-AWV) and their model parameter estimation efficiency is confirmed under different data contamination scenarios in simulation and case studies. Furthermore, a hybrid case study is conducted that establishes a connection between model parameter estimation quality and implied navigation performance in those data contamination settings. Finally, the performance of the new technique is compared to the conventional Allan Variance in a land vehicle navigation experiment, where the inertial information is fused with an auxiliary source and vehicle movement constraints using the Extended and Unscented Kalman Filters (EKF/UKF). Notably, the results indicate that under linear-static conditions, the UKF with the new method provides a 16.8-17.3% improvement in 3D orientation compared to the conventional setting (AV with EKF), while the EKF gives a 7.5-9.7% improvement. Also, in dynamic conditions (i.e., turns), the UKF demonstrates an 14.7-17.8% improvement in horizontal positioning and an 11.9-12.5% in terms of 3D orientation, while the EKF has an 8.3-12.8% and an 11.4-11.7% improvement respectively. Overall, the UKF appears to perform better but has a significantly higher computational load compared to the EKF. Hence, the EKF appears to be a more realistic option for real-time applications such as autonomous vehicle navigation

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstøtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er å designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede løsningen er fokusert på forbedring av fysisk aktivitet. Prototypen bruker bærbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for å utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen på teknologisk verifisering snarere enn klinisk evaluering.publishedVersio

    Causal Sampling, Compressing, and Channel Coding of Streaming Data

    Get PDF
    With the emergence of the Internet of Things, communication systems, such as those employed in distributed control and tracking scenarios, are becoming increasingly dynamic, interactive, and delay-sensitive. The data in such real-time systems arrive at the encoder progressively in a streaming fashion. An intriguing question is: what codes can transmit streaming data with both high reliability and low latency? Classical non-causal (block) encoding schemes can transmit data reliably but under the assumption that the encoder knows the entire data block before the transmission. While this is a realistic assumption in delay-tolerant systems, it is ill-suited to real-time systems due to the delay introduced by collecting data into a block. This thesis studies causal encoding: the encoder transmits information based on the causally received data while the data is still streaming in and immediately incorporates the newly received data into a continuing transmission on the fly. This thesis investigates causal encoding of streaming data in three scenarios: causal sampling, causal lossy compressing, and causal joint source-channel coding (JSCC). In the causal sampling scenario, a sampler observes a continuous-time source process and causally decides when to transmit real-valued samples of it under a constraint on the average number of samples per second; an estimator uses the causally received samples to approximate the source process in real time. We propose a causal sampling policy that achieves the best tradeoff between the sampling frequency and the end-to-end real-time estimation distortion for a class of continuous Markov processes. In the causal lossy compressing scenario, the sampling frequency constraint in the causal sampling scenario is replaced by a rate constraint on the average number of bits per second. We propose a causal code that achieves the best causal distortion-rate tradeoff for the same class of processes. In the causal JSCC scenario, the noiseless channel and the continuous-time process in the previous scenarios are replaced by a discrete memoryless channel with feedback and a sequence of streaming symbols, respectively. We propose a causal joint sourcechannel code that achieves the maximum exponentially decaying rate of the error probability compatible with a given rate. Remarkably, the fundamental limits in the causal lossy compressing and the causal JSCC scenarios achieved by our causal codes are no worse than those achieved by the best non-causal codes. In addition to deriving the fundamental limits and presenting the causal codes that achieve the limits, we also show that our codes apply to control systems, are resilient to system deficiencies such as channel delay and noise, and have low complexities.</p

    Three essays in macroeconomic forecasting using dimensionality reduction methods

    Get PDF
    This thesis consists of three studies that concentrate on the dimensionality reduction methods used in macroeconomic forecasting. Chapter 2 (the first study) aims to investigates the predictive ability of several indicators of consumer sentiment and perceptions about the economy. Based on seven key qualitative questions in the University of Michigan survey of consumers, I employ various quantification approaches to construct six indexes namely sentiment, disagreement, pessimism, uncertainty, price pressure, and interest rate pressure. I establish that these six indexes convey predictability for key macroeconomic indicators beyond and above the information found in existing, popular macroeconomic and financial indicators. I also provide a deep explanation of consumer indexes by monitoring their response to supply, demand, monetary policy and financial shocks using a VAR model with sign restrictions. The results indicate that price pressure and interest rate pressure are mainly correlated with financial and uncertainty shocks, while the other indicators reflect the formation of opinions that are sensitive to shocks related to supply, demand, and monetary policy. Chapter 3 (the second study) explores the dimensionality reduction algorithm by extracting factors from a large number of predictors that take into account correlation with the predicted (target) variable, using a novel time-varying parameter three pass-regression-filter algorithm (TVP-3PRF). The benchmark 3PRF algorithm (Kelly and Pruitt, 2015) assumes that a predictor is relevant for forecasting over the whole sample and can be represented using a series of OLS regressions. I extend this approach using time-varying parameter regressions that are conveniently represented as a series of high-dimensional time-invariant regressions which can be solved using penalized likelihood estimators. TVP-3PRF algorithm allows for a subset of variables to be relevant for extracting factors at each point in time, accounting for recent evidence that economic predictors are short-lived. An empirical exercise confirms that this novel feature of TVP-3PRF algorithm is highly relevant for forecasting macroeconomic time series. Chapter 4 (the third study) determines which of the two main types of algorithms in the field of dimensionality reduction truely reflect the true way variables enter the model. It is know that in the area of modelling and forecasting highdimensional macroeconomic and financial time series, two main methods, sparse modelling and dense modelling, are both popular. However, instead of simply viewing each a method for avoiding overfitting, a question that is worth exploring is which of these models can represent the real structure of the data. Another question that arises is whether the uncertainty of variable selection will affect the prediction. In line with Giannone et al. (2021), I used their spike and slab prior to explore the scenarios for six economies when forecasting production growth. The results indicate that the way macroeconomic data are employed in the model of all the economies have an obvious sparse structure albeit with different degrees. However, the pervasiveness of uncertainty causes the sparse model to fail and the model averaging technique to become the preferred method. Moreover, what is surprising is that the dense model(ridge regression) dominated after the pandemic began
    • …
    corecore