2,032 research outputs found

    Insect inspired visual motion sensing and flying robots

    Get PDF
    International audienceFlying insects excellently master visual motion sensing techniques. They use dedicated motion processing circuits at a low energy and computational costs. Thanks to observations obtained on insect visual guidance, we developed visual motion sensors and bio-inspired autopilots dedicated to flying robots. Optic flow-based visuomotor control systems have been implemented on an increasingly large number of sighted autonomous robots. In this chapter, we present how we designed and constructed local motion sensors and how we implemented bio-inspired visual guidance scheme on-board several micro-aerial vehicles. An hyperacurate sensor in which retinal micro-scanning movements are performed via a small piezo-bender actuator was mounted onto a miniature aerial robot. The OSCAR II robot is able to track a moving target accurately by exploiting the microscan-ning movement imposed to its eye's retina. We also present two interdependent control schemes driving the eye in robot angular position and the robot's body angular position with respect to a visual target but without any knowledge of the robot's orientation in the global frame. This "steering-by-gazing" control strategy, which is implemented on this lightweight (100 g) miniature sighted aerial robot, demonstrates the effectiveness of this biomimetic visual/inertial heading control strategy

    Redundant neural vision systems: competing for collision recognition roles

    Get PDF
    Ability to detect collisions is vital for future robots that interact with humans in complex visual environments. Lobula giant movement detectors (LGMD) and directional selective neurons (DSNs) are two types of identified neurons found in the visual pathways of insects such as locusts. Recent modelling studies showed that the LGMD or grouped DSNs could each be tuned for collision recognition. In both biological and artificial vision systems, however, which one should play the collision recognition role and the way the two types of specialized visual neurons could be functioning together are not clear. In this modeling study, we compared the competence of the LGMD and the DSNs, and also investigate the cooperation of the two neural vision systems for collision recognition via artificial evolution. We implemented three types of collision recognition neural subsystems – the LGMD, the DSNs and a hybrid system which combines the LGMD and the DSNs subsystems together, in each individual agent. A switch gene determines which of the three redundant neural subsystems plays the collision recognition role. We found that, in both robotics and driving environments, the LGMD was able to build up its ability for collision recognition quickly and robustly therefore reducing the chance of other types of neural networks to play the same role. The results suggest that the LGMD neural network could be the ideal model to be realized in hardware for collision recognition

    Platform Development for the Implementation and Testing of New Swarming Strategies

    Get PDF
    Gemstone Team SWARM-AISwarm robotics--the use of multiple autonomous robots in coordination to accomplish a task--is useful for mapping, light package transport, and search and rescue operations, among other applications. Researchers and industry professionals have developed robotic swarm mechanisms to accomplish these tasks. Some of those mechanisms or “strategies” have been tested on hardware; however, the technical requirements involved in fielding a drone swarm can be prohibitive to physical testing. Team SWARM-AI has developed a platform that provides a starting point for testing new swarming strategies. This platform allows the user to select vehicles of their choosing- either air, land, or water based, or some combination thereof- as well as define their own swarming method. Using a novel decentralized approach to ground control software, this platform provides a user interface and a system of computational “units” to coordinate drone swarms with a centralized, decentralized, or combination architecture. Additionally, the platform propagates user input from the master unit to the rest of the swarm and allows each unit to request sensor data from other units. The user is free to edit the processes by which each drone interacts with the environment and the rest of the swarm, giving them freedom to test their swarming strategy. The software system is then tested with a swarm of quadcopters using Software in the Loop (SITL) testing

    Integration of aerial and terrestrial locomotion modes in a bioinspired robotic system

    Get PDF
    In robotics, locomotion is a fundamental task for the development of high-level activities such as navigation. For a robotic system, the challenge of evading environmental obstacles depends both on its physical capabilities and on the strategies followed to achieve it. Thus, a robot with the ability to develop several modes of locomotion (walking, flying or swimming) has a greater probability of success in achieving its goal than a robot that develops only one. In nature, Hymenoptera insects use terrestrial and aerial modes of locomotion to carry out their activities. Mimicry the physical capabilities of these insects opens the possibility of improvements in the area of robotic locomotion. Therefore, this work seeks to generate a bio-inspired robotic system that integrates the terrestrial and aerial modes of locomotion. The methodology used in this research project has considered the anatomical study and characterization of Hymenoptera insects locomotion, the proposal of conceptual models that integrate terrestrial and aerial modes locomotion, the construction of a physical platform and experimental testing of the system. In addition, a gait generation approach based on an artificial nervous system of coupled nonlinear oscillators has been proposed. This approach has resulted in the generation of a coherent and functional gait pattern that, in combination with the flight capabilities of the system, has constituted an aero-terrestrial robot. The results obtained in this work include the construction of a bioinspired physical platform, the generation of the gait process using an artificial nervous system and the experimental tests on the integration of aero-terrestrial locomotion.Conacyt - Becario Naciona

    Development of c-means Clustering Based Adaptive Fuzzy Controller for A Flapping Wing Micro Air Vehicle

    Full text link
    Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous Unmanned Aerial Vehicles (UAVs). In this work, a four wing Natureinspired (NI) FW MAV is modeled and controlled inspiring by its advanced features like quick flight, vertical take-off and landing, hovering, and fast turn, and enhanced manoeuvrability when contrasted with comparable-sized fixed and rotary wing UAVs. The Fuzzy C-Means (FCM) clustering algorithm is utilized to demonstrate the NIFW MAV model, which has points of interest over first principle based modelling since it does not depend on the system dynamics, rather based on data and can incorporate various uncertainties like sensor error. The same clustering strategy is used to develop an adaptive fuzzy controller. The controller is then utilized to control the altitude of the NIFW MAV, that can adapt with environmental disturbances by tuning the antecedent and consequent parameters of the fuzzy system.Comment: this paper is currently under review in Journal of Artificial Intelligence and Soft Computing Researc

    Flying Animal Inspired Behavior-Based Gap-Aiming Autonomous Flight with a Small Unmanned Rotorcraft in a Restricted Maneuverability Environment

    Get PDF
    This dissertation research shows a small unmanned rotorcraft system with onboard processing and a vision sensor can produce autonomous, collision-free flight in a restricted maneuverability environment with no a priori knowledge by using a gap-aiming behavior inspired by flying animals. Current approaches to autonomous flight with small unmanned aerial systems (SUAS) concentrate on detecting and explicitly avoiding obstacles. In contrast, biology indicates that birds, bats, and insects do the opposite; they react to open spaces, or gaps in the environment, with a gap_aiming behavior. Using flying animals as inspiration a behavior-based robotics approach is taken to implement and test their observed gap-aiming behavior in three dimensions. Because biological studies were unclear whether the flying animals were reacting to the largest gap perceived, the closest gap perceived, or all of the gaps three approaches for the perceptual schema were explored in simulation: detect_closest_gap, detect_largest_gap, and detect_all_gaps. The result of these simulations was used in a proof-of-concept implementation on a 3DRobotics Solo quadrotor platform in an environment designed to represent the navigational diffi- culties found inside a restricted maneuverability environment. The motor schema is implemented with an artificial potential field to produce the action of aiming to the center of the gap. Through two sets of field trials totaling fifteen flights conducted with a small unmanned quadrotor, the gap-aiming behavior observed in flying animals is shown to produce repeatable autonomous, collision-free flight in a restricted maneuverability environment. Additionally, using the distance from the starting location to perceived gaps, the horizontal and vertical distance traveled, and the distance from the center of the gap during traversal the implementation of the gap selection approach performs as intended, the three-dimensional movement produced by the motor schema and the accuracy of the motor schema are shown, respectively. This gap-aiming behavior provides the robotics community with the first known implementation of autonomous, collision-free flight on a small unmanned quadrotor without explicit obstacle detection and avoidance as seen with current implementations. Additionally, the testing environment described by quantitative metrics provides a benchmark for autonomous SUAS flight testing in confined environments. Finally, the success of the autonomous collision-free flight implementation on a small unmanned rotorcraft and field tested in a restricted maneuverability environment could have important societal impact in both the public and private sectors
    • …
    corecore