117 research outputs found

    Human Face Detection: Manual vs. Kohonen Self Organizing Map

    Get PDF
    In today's world it is very much important to maintain the security of information and its risks. The biometric-based techniques are very much useful in these problems. Among the several kinds of biometric-based technique, face detection is much complex and much more important. Due to the age and several other problems, a human face structure changes over time, again a human has lots of expressions. Sometimes due to the lighting condition or the variation of the angle of an input device, the pattern of a human face structure also changed. As a result, the face cannot be detected properly. In this paper, a method is proposed that can detect the human faces both automatically and manually very efficiently. In manual mode, a user can select the input faces referred by the system according to their choice. In automated mode, the system detected all possible face areas using the Kohonen Self-Organizing Feature Map technique. This method reduced the complex color image into a vector quantized image with desired colors. Then a color segmentation technique is used to detect the possible face skin areas from the vector quantized image. Then the Histogram Oriented Gradient technique used to detect the feature from the faces and K-Nearest Neighbor Classifier is used to compare both face images detected by the two modes. The automated method prosed better accuracy than the manual method

    An Adaptive Color Image Segmentation

    Get PDF
    A novel Adaptive Color Image Segmentation (ACIS) System for color image segmentation is presented. The proposed ACIS system uses a neural network with architecture similar to the multilayer perceptron (MLP) network. The main difference is that neurons here uses a multisigmoid activation function. The multisigmoid function is the key for segmentation. The number of steps i.e. thresholds in the multisigmoid function are dependant on the number of clusters in the image. The threshold values for detecting the clusters and their labels are found automatically from the first order derivative of histograms of saturation and intensity in the HSV color space. Here, the main use of neural network is to detect the number of objects automatically from an image. The advantage of this method is that no a priori knowledge is required to segment the color image. ACIS label the objects with their mean colors. The algorithm is found to be reliable and works satisfactorily on different kinds of color images. Experimental results show that the performance of ACIS is robust on noisy images also

    COST292 experimental framework for TRECVID 2008

    Get PDF
    In this paper, we give an overview of the four tasks submitted to TRECVID 2008 by COST292. The high-level feature extraction framework comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a multi-modal classifier based on SVMs and several descriptors. The third system uses three image classifiers based on ant colony optimisation, particle swarm optimisation and a multi-objective learning algorithm. The fourth system uses a Gaussian model for singing detection and a person detection algorithm. The search task is based on an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. The rushes task submission is based on a spectral clustering approach for removing similar scenes based on eigenvalues of frame similarity matrix and and a redundancy removal strategy which depends on semantic features extraction such as camera motion and faces. Finally, the submission to the copy detection task is conducted by two different systems. The first system consists of a video module and an audio module. The second system is based on mid-level features that are related to the temporal structure of videos

    The COST292 experimental framework for TRECVID 2007

    Get PDF
    In this paper, we give an overview of the four tasks submitted to TRECVID 2007 by COST292. In shot boundary (SB) detection task, four SB detectors have been developed and the results are merged using two merging algorithms. The framework developed for the high-level feature extraction task comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a Bayesian classifier trained with a “bag of subregions”. The third system uses a multi-modal classifier based on SVMs and several descriptors. The fourth system uses two image classifiers based on ant colony optimisation and particle swarm optimisation respectively. The system submitted to the search task is an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. Finally, the rushes task submission is based on a video summarisation and browsing system comprising two different interest curve algorithms and three features

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    Hybrid segmentation method with confidence region detection for tumor identification

    Get PDF
    Segmentation methods can mutually exclude the location of the tumor. However, the challenge of complex location or incomplete identification is located in segmentation challenge dataset. Identificationof tumor location is difficult due to the variation of intensities in MRI image. Vairation of intensity extends up to edema. Confidence Region with Contour Detection identifies the variation of intensities and level set algorithm (Region Scale Fitting) is used to delineate among the region of inner and outer of the tumor. Automatic feature selection method is required due to data complexity. An improved Self Organization Feature Map. Method is required. Weighted SOM Map selects a deterministic feature. This feature is one higher trained accuracy feature. When this specific feature is combines with cluster therefore it is known as deterministic feature clustering. This method gives confidence element. Confidence Region with Contour detection is facing the issue due to extended variations of intensities. These intensities are segmented by hybrid SOM Pixel Labelling with Reduce Cluster Membership and Deterministic Feature Clustering. This hyhbrid method segments the complex tumor intensities. This method produces a potential cluster which is achieved through the hybrid of three unsupervised learning techniques. Hybrid cluster method segments the tumor region. Extended intensities are also segmented by this hybrid approach. Above methods are validated on MICCAI BraTs brain tumor dataset, this is a segmentation challenge dataset. Proposed hybrid algorithm is efficient and it's accuracy can be seen with testing parameters like Dice Overlap Index, Jaccard Tanimoto Coefficient Index, Mean Squared Error and Peak Signal to Noise Ratio. Dice OverlapIndex is 98%, Jaccard Index is 96 percent, Mean Squared Error is 0.06 and Peak Signal To Noise ratio is 18db. The performance of the suggested algorithm is compared to other state of the art

    Backpropagation Neural Ensemble for Localizing and Recognizing Non-Standardized Malaysia’s Car Plates

    Get PDF
    In this paper, we describe a research project that autonomously localizes and recognizes non-standardized Malaysian’s car plates using conventional Backpropagation algorithm (BPP) in combination with Ensemble Neural Network (ENN). We compared the results with the results obtained using simple Feed-Forward Neural Network (FFNN). This research aims to solve four main issues; (1) localization of car plates that has the same colour with the vehicle colour, (2) detection and recognition of car plates with varying sizes, (3) detection and recognition of car plates with different font types, and (4) detection and recognition of non-standardized car plates. The non-standardized Malaysian’s car plates are different from the normal plate as they contain italic characters, a combination of cursive characters, and different font types. The experimental results show that the combination of backpropagation and ENN can be effectively used to solve these four issues. The combination of BPP and ENN’s algorithm achieved a localization rate of 98% and a 97% in recognition rate. On the other hand, the combination of backpropagation and simple FFNN recorded a 96% recognition rate

    Artificial neural network-statistical approach for PET volume analysis and classification

    Get PDF
    Copyright © 2012 The Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.The increasing number of imaging studies and the prevailing application of positron emission tomography (PET) in clinical oncology have led to a real need for efficient PET volume handling and the development of new volume analysis approaches to aid the clinicians in the clinical diagnosis, planning of treatment, and assessment of response to therapy. A novel automated system for oncological PET volume analysis is proposed in this work. The proposed intelligent system deploys two types of artificial neural networks (ANNs) for classifying PET volumes. The first methodology is a competitive neural network (CNN), whereas the second one is based on learning vector quantisation neural network (LVQNN). Furthermore, Bayesian information criterion (BIC) is used in this system to assess the optimal number of classes for each PET data set and assist the ANN blocks to achieve accurate analysis by providing the best number of classes. The system evaluation was carried out using experimental phantom studies (NEMA IEC image quality body phantom), simulated PET studies using the Zubal phantom, and clinical studies representative of nonsmall cell lung cancer and pharyngolaryngeal squamous cell carcinoma. The proposed analysis methodology of clinical oncological PET data has shown promising results and can successfully classify and quantify malignant lesions.This study was supported by the Swiss National Science Foundation under Grant SNSF 31003A-125246, Geneva Cancer League, and the Indo Swiss Joint Research Programme ISJRP 138866. This article is made available through the Brunel Open Access Publishing Fund
    corecore