834 research outputs found

    Statistical shape analysis in neuroimaging : methods, challenges, validation : applications to the study of brain asymmetries in schizophrenia

    Get PDF
    The study of brain shape and its patterns of variations can provide insights into the understanding of normal and pathological brain development and brain degenerative processes. This thesis focuses on the in vivo analysis of human brain shape as extracted from three-dimensional magnetic resonance images. Major automatic methods for the analysis of brain shape are discussed particularly focusing on the computation of shape metrics, the subsequent inference procedures, and their applications to the study of brain asymmetries in schizophrenia. Methodological challenges as well as possible biological factors that complicate the analysis of brain shape, and its validation, are also discussed. The contributions of this research work are as it follows. First, a novel automatic method for the statistical shape analysis of local interhemispheric asymmetries is presented and applied to the study of cerebral structural asymmetries in schizophrenia. The method extracts and analyzes smooth surface representations approximating the gross shape of the outlines of cerebral hemispheres. Second, a novel and fully automatic image processing framework for the validation of measures of brain asymmetry is proposed. The framework is based on the synthesis of realistic three-dimensional magnetic resonance images with a known asymmetry pattern. It employs a parametric model emulating the normal interhemispheric bending of the human brain while retaining other subject-specific features of brain anatomy. The framework is applied for the quantitative validation of measures of asymmetry in brain tissues' composition as computed by voxel-based morphometry. Particularly, the framework is used to investigate the dependence of voxel-based measures of brain asymmetry on the spatial normalization scheme, template space, and amount of spatial smoothing applied. The developed automatic framework is made available as open-source software. Third, a novel Simplified Reeb Graph based descriptor of the human striatum is proposed. The effectiveness of such a descriptor is demonstrated for the purposes of automatic registration, decomposition, and comparison of striatal shapes in schizophrenia patients and matched normal controls. In conclusion, this thesis proposes novel methods for shape representation and analysis within three-dimensional magnetic resonance brain images, an original way for validating these methods, and applies the methods for the study of brain asymmetries in schizophrenia. The impact of this research lies in its potential implications for the development of biomarkers aiming to a better understanding of the brain in normal and pathological conditions, early diagnosis of a number of brain diseases, and development of novel therapeutic strategies for improving the quality of life of affected individuals. In addition, the distribution of simulated data and automatic tools for validation of morphometric measures of brain asymmetry is expected to have a great impact in enabling systematic validation of novel and existing methods for the analysis of brain asymmetries, quantitatively comparing them, and possibly clarifying contradicting findings in the neuroimaging literature of brain lateralizations

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Multivariate Analysis of MR Images in Temporal Lobe Epilepsy

    Get PDF
    Epilepsy stands aside from other neurological diseases because clinical patterns of progression are unknown: The etiology of each epilepsy case is unique and so it is the individual prognosis. Temporal lobe epilepsy (TLE) is the most frequent type of focal epilepsy and the surgical excision of the hippocampus and the surrounding tissue is an accepted treatment in refractory cases, specially when seizures become frequent increasingly affecting the performance of daily tasks and significantly decreasing the quality of life of the patient. The sensitivity of clinical imaging is poor for patients with no hippocampal involvement and invasive procedures such as the Wada test and intracranial EEG are required to detect and lateralize epileptogenic tissue. This thesis develops imaging processing techniques using quantitative relaxometry and diffusion tensor imaging with the aiming to provide a less invasive alternative when detectability is low. Chapter 2 develops the concept of individual feature maps on regions of interest. A laterality score on these maps correctly distinguished left TLE from right TLE in 12 out of 15 patients. Chapter 3 explores machine learning models to detect TLE, obtaining perfect classification for left patients, and 88.9% accuracy for right TLE patients. Chapter 4 focuses on temporal lobe asymmetry developing a voxel-based method for assessing asymmetry and verifying its applicability to individual predictions (92% accuracy) and group-wise statistical analyses. Informative ROI and voxel-based informative features are described for each experiment, demonstrating the relative importance of mean diffusivity over other MR imaging alternatives in identification and lateralization of TLE patients. Finally, the conclusion chapter discuss contributions, main limitations and outlining options for future research

    Quantitation in MRI : application to ageing and epilepsy

    No full text
    Multi-atlas propagation and label fusion techniques have recently been developed for segmenting the human brain into multiple anatomical regions. In this thesis, I investigate possible adaptations of these current state-of-the-art methods. The aim is to study ageing on the one hand, and on the other hand temporal lobe epilepsy as an example for a neurological disease. Overall effects are a confounding factor in such anatomical analyses. Intracranial volume (ICV) is often preferred to normalize for global effects as it allows to normalize for estimated maximum brain size and is hence independent of global brain volume loss, as seen in ageing and disease. I describe systematic differences in ICV measures obtained at 1.5T versus 3T, and present an automated method of measuring intracranial volume, Reverse MNI Brain Masking (RBM), based on tissue probability maps in MNI standard space. I show that this is comparable to manual measurements and robust against field strength differences. Correct and robust segmentation of target brains which show gross abnormalities, such as ventriculomegaly, is important for the study of ageing and disease. We achieved this with incorporating tissue classification information into the image registration process. The best results in elderly subjects, patients with TLE and healthy controls were achieved using a new approach using multi-atlas propagation with enhanced registration (MAPER). I then applied MAPER to the problem of automatically distinguishing patients with TLE with (TLE-HA) and without (TLE-N) hippocampal atrophy on MRI from controls, and determine the side of seizure onset. MAPER-derived structural volumes were used for a classification step consisting of selecting a set of discriminatory structures and applying support vector machine on the structural volumes as well as morphological similarity information such as volume difference obtained with spectral analysis. Acccuracies were 91-100 %, indicating that the method might be clinically useful. Finally, I used the methods developed in the previous chapters to investigate brain regional volume changes across the human lifespan in over 500 healthy subjects between 20 to 90 years of age, using data from three different scanners (2x 1.5T, 1x 3T), using the IXI database. We were able to confirm several known changes, indicating the veracity of the method. In addition, we describe the first multi-region, whole-brain database of normal ageing

    The prognosis of allocentric and egocentric neglect : evidence from clinical scans

    Get PDF
    We contrasted the neuroanatomical substrates of sub-acute and chronic visuospatial deficits associated with different aspects of unilateral neglect using computed tomography scans acquired as part of routine clinical diagnosis. Voxel-wise statistical analyses were conducted on a group of 160 stroke patients scanned at a sub-acute stage. Lesion-deficit relationships were assessed across the whole brain, separately for grey and white matter. We assessed lesions that were associated with behavioural performance (i) at a sub-acute stage (within 3 months of the stroke) and (ii) at a chronic stage (after 9 months post stroke). Allocentric and egocentric neglect symptoms at the sub-acute stage were associated with lesions to dissociated regions within the frontal lobe, amongst other regions. However the frontal lesions were not associated with neglect at the chronic stage. On the other hand, lesions in the angular gyrus were associated with persistent allocentric neglect. In contrast, lesions within the superior temporal gyrus extending into the supramarginal gyrus, as well as lesions within the basal ganglia and insula, were associated with persistent egocentric neglect. Damage within the temporo-parietal junction was associated with both types of neglect at the sub-acute stage and 9 months later. Furthermore, white matter disconnections resulting from damage along the superior longitudinal fasciculus were associated with both types of neglect and critically related to both sub-acute and chronic deficits. Finally, there was a significant difference in the lesion volume between patients who recovered from neglect and patients with chronic deficits. The findings presented provide evidence that (i) the lesion location and lesion size can be used to successfully predict the outcome of neglect based on clinical CT scans, (ii) lesion location alone can serve as a critical predictor for persistent neglect symptoms, (iii) wide spread lesions are associated with neglect symptoms at the sub-acute stage but only some of these are critical for predicting whether neglect will become a chronic disorder and (iv) the severity of behavioural symptoms can be a useful predictor of recovery in the absence of neuroimaging findings on clinical scans. We discuss the implications for understanding the symptoms of the neglect syndrome, the recovery of function and the use of clinical scans to predict outcome

    Regional brain morphometry in patients with traumatic brain injury based on acute- and chronic-phase magnetic resonance imaging.

    Get PDF
    Traumatic brain injury (TBI) is caused by a sudden external force and can be very heterogeneous in its manifestation. In this work, we analyse T1-weighted magnetic resonance (MR) brain images that were prospectively acquired from patients who sustained mild to severe TBI. We investigate the potential of a recently proposed automatic segmentation method to support the outcome prediction of TBI. Specifically, we extract meaningful cross-sectional and longitudinal measurements from acute- and chronic-phase MR images. We calculate regional volume and asymmetry features at the acute/subacute stage of the injury (median: 19 days after injury), to predict the disability outcome of 67 patients at the chronic disease stage (median: 229 days after injury). Our results indicate that small structural volumes in the acute stage (e.g. of the hippocampus, accumbens, amygdala) can be strong predictors for unfavourable disease outcome. Further, group differences in atrophy are investigated. We find that patients with unfavourable outcome show increased atrophy. Among patients with severe disability outcome we observed a significantly higher mean reduction of cerebral white matter (3.1%) as compared to patients with low disability outcome (0.7%)
    corecore