704 research outputs found

    2D Reconstruction of Small Intestine's Interior Wall

    Full text link
    Examining and interpreting of a large number of wireless endoscopic images from the gastrointestinal tract is a tiresome task for physicians. A practical solution is to automatically construct a two dimensional representation of the gastrointestinal tract for easy inspection. However, little has been done on wireless endoscopic image stitching, let alone systematic investigation. The proposed new wireless endoscopic image stitching method consists of two main steps to improve the accuracy and efficiency of image registration. First, the keypoints are extracted by Principle Component Analysis and Scale Invariant Feature Transform (PCA-SIFT) algorithm and refined with Maximum Likelihood Estimation SAmple Consensus (MLESAC) outlier removal to find the most reliable keypoints. Second, the optimal transformation parameters obtained from first step are fed to the Normalised Mutual Information (NMI) algorithm as an initial solution. With modified Marquardt-Levenberg search strategy in a multiscale framework, the NMI can find the optimal transformation parameters in the shortest time. The proposed methodology has been tested on two different datasets - one with real wireless endoscopic images and another with images obtained from Micro-Ball (a new wireless cubic endoscopy system with six image sensors). The results have demonstrated the accuracy and robustness of the proposed methodology both visually and quantitatively.Comment: Journal draf

    Automatic Bleeding Frame and Region Detection for GLCM Using Artificial Neural Network

    Get PDF
     Wireless capsule endoscopy is a device that inspects the direct visualization of patient’s gastrointestinal tract without invasiveness. Analyzing the WCE video is a time- consuming task hence computer aided technique is used to reduce the burden of medical clinicians. This paper proposes a novel color feature extraction method to detect the bleeding frame. First, we perform word based histogram for rapid bleeding detection in WCE images. Classification of bleeding WCE frame is performed by applying for glcm using  Artificial Neural Network and K-nearest neighbour method. Second we propose a two-stage saliency map extraction method. In first stage saliency, we inspect the bleeding images under different color components to highlight the bleeding regions. From second stage saliency red color in the bleeding frame reveals that the region is affected. Then, by using algorithm we fuse the two-stage of saliency to detect the bleeding area. Experimental results show that the proposed method is very efficient in detecting the bleeding frames and the region

    An efficient method to classify GI tract images from WCE using visual words

    Get PDF
    The digital images made with the Wireless Capsule Endoscopy (WCE) from the patient's gastrointestinal tract are used to forecast abnormalities. The big amount of information from WCE pictures could take 2 hours to review GI tract illnesses per patient to research the digestive system and evaluate them. It is highly time consuming and increases healthcare costs considerably. In order to overcome this problem, the CS-LBP (Center Symmetric Local Binary Pattern) and the ACC (Auto Color Correlogram) were proposed to use a novel method based on a visual bag of features (VBOF). In order to solve this issue, we suggested a Visual Bag of Features(VBOF) method by incorporating Scale Invariant Feature Transform (SIFT), Center-Symmetric Local Binary Pattern (CS-LBP) and Auto Color Correlogram (ACC). This combination of features is able to detect the interest point, texture and color information in an image. Features for each image are calculated to create a descriptor with a large dimension. The proposed feature descriptors are clustered by K- means referred to as visual words, and the Support Vector Machine (SVM) method is used to automatically classify multiple disease abnormalities from the GI tract. Finally, post-processing scheme is applied to deal with final classification results i.e. validated the performance of multi-abnormal disease frame detection

    REGION-COLOR BASED AUTOMATED BLEEDING DETECTION IN CAPSULE ENDOSCOPY VIDEOS

    Get PDF
    Capsule Endoscopy (CE) is a unique technique for facilitating non-invasive and practical visualization of the entire small intestine. It has attracted a critical mass of studies for improvements. Among numerous studies being performed in capsule endoscopy, tremendous efforts are being made in the development of software algorithms to identify clinically important frames in CE videos. This thesis presents a computer-assisted method which performs automated detection of CE video-frames that contain bleeding. Specifically, a methodology is proposed to classify the frames of CE videos into bleeding and non-bleeding frames. It is a Support Vector Machine (SVM) based supervised method which classifies the frames on the basis of color features derived from image-regions. Image-regions are characterized on the basis of statistical features. With 15 available candidate features, an exhaustive feature-selection is followed to obtain the best feature subset. The best feature-subset is the combination of features that has the highest bleeding discrimination ability as determined by the three performance-metrics: accuracy, sensitivity and specificity. Also, a ground truth label annotation method is proposed in order to partially automate delineation of bleeding regions for training of the classifier. The method produced promising results with sensitivity and specificity values up to 94%. All the experiments were performed separately for RGB and HSV color spaces. Experimental results show the combination of the mean planes in red and green planes to be the best feature-subset in RGB (Red-Green-Blue) color space and the combination of the mean values of all three planes of the color space to be the best feature-subset in HSV (Hue-Saturation-Value)

    Detection of Intestinal Bleeding in Wireless Capsule Endoscopy using Machine Learning Techniques

    Get PDF
    Gastrointestinal (GI) bleeding is very common in humans, which may lead to fatal consequences. GI bleeding can usually be identified using a flexible wired endoscope. In 2001, a newer diagnostic tool, wireless capsule endoscopy (WCE) was introduced. It is a swallow-able capsule-shaped device with a camera that captures thousands of color images and wirelessly sends those back to a data recorder. After that, the physicians analyze those images in order to identify any GI abnormalities. But it takes a longer screening time which may increase the danger of the patients in emergency cases. It is therefore necessary to use a real-time detection tool to identify bleeding in the GI tract. Each material has its own spectral ‘signature’ which shows distinct characteristics in specific wavelength of light [33]. Therefore, by evaluating the optical characteristics, the presence of blood can be detected. In the study, three main hardware designs were presented: one using a two-wavelength based optical sensor and others using two six-wavelength based spectral sensors with AS7262 and AS7263 chips respectively to determine the optical characteristics of the blood and non-blood samples. The goal of the research is to develop a machine learning model to differentiate blood samples (BS) and non-blood samples (NBS) by exploring their optical properties. In this experiment, 10 levels of crystallized bovine hemoglobin solutions were used as BS and 5 food colors (red, yellow, orange, tan and pink) with different concentrations totaling 25 non-blood samples were used as NBS. These blood and non-blood samples were also combined with pig’s intestine to mimic in-vivo experimental environment. The collected samples were completely separated into training and testing data. Different spectral features are analyzed to obtain the optical information about the samples. Based on the performance on the selected most significant features of the spectral wavelengths, k-nearest neighbors algorithm (k-NN) is finally chosen for the automated bleeding detection. The proposed k-NN classifier model has been able to distinguish the BS and NBS with an accuracy of 91.54% using two wavelengths features and around 89% using three combined wavelengths features in the visible and near-infrared spectral regions. The research also indicates that it is possible to deploy tiny optical detectors to detect GI bleeding in a WCE system which could eliminate the need of time-consuming image post-processing steps
    • …
    corecore