192 research outputs found

    Mobility increases localizability: A survey on wireless indoor localization using inertial sensors

    Get PDF

    Crowdsourcing-Based Fingerprinting for Indoor Location in Multi-Storey Buildings

    Get PDF
    POCI-01-0247-FEDER-033479The number of available indoor location solutions has been growing, however with insufficient precision, high implementation costs or scalability limitations. As fingerprinting-based methods rely on ubiquitous information in buildings, the need for additional infrastructure is discarded. Still, the time-consuming manual process to acquire fingerprints limits their applicability in most scenarios. This paper proposes an algorithm for the automatic construction of environmental fingerprints on multi-storey buildings, leveraging the information sources available in each scenario. It relies on unlabelled crowdsourced data from users’ smartphones. With only the floor plans as input, a demand for most applications, we apply a multimodal approach that joins inertial data, local magnetic field andWi-Fi signals to construct highly accurate fingerprints. Precise movement estimation is achieved regardless of smartphone usage through Deep Neural Networks, and the transition between floors detected from barometric data. Users’ trajectories obtained with Pedestrian Dead Reckoning techniques are partitioned into clusters with Wi-Fi measurements. Straight sections from the same cluster are then compared with subsequence Dynamic Time Warping to search for similarities. From the identified overlapping sections, a particle filter fits each trajectory into the building’s floor plans. From all successfully mapped routes, fingerprints labelled with physical locations are finally obtained. Experimental results from an office and a university building show that this solution constructs comparable fingerprints to those acquired manually, thus providing a useful tool for fingerprinting-based solutions automatic setup.publishersversionpublishe

    Human Crowdsourcing Data for Indoor Location Applied to Ambient Assisted Living Scenarios

    Get PDF
    In the last decades, the rise of life expectancy has accelerated the demand for new technological solutions to provide a longer life with improved quality. One of the major areas of the Ambient Assisted Living aims to monitor the elderly location indoors. For this purpose, indoor positioning systems are valuable tools and can be classified depending on the need of a supporting infrastructure. Infrastructure-based systems require the investment on expensive equipment and existing infrastructure-free systems, although rely on the pervasively available characteristics of the buildings, present some limitations regarding the extensive process of acquiring and maintaining fingerprints, the maps that store the environmental characteristics to be used in the localisation phase. These problems hinder indoor positioning systems to be deployed in most scenarios. To overcome these limitations, an algorithm for the automatic construction of indoor floor plans and environmental fingerprints is proposed. With the use of crowdsourcing techniques, where the extensiveness of a task is reduced with the help of a large undefined group of users, the algorithm relies on the combination ofmultiple sources of information, collected in a non-annotated way by common smartphones. The crowdsourced data is composed by inertial sensors, responsible for estimating the users’ trajectories, Wi-Fi radio and magnetic field signals. Wi-Fi radio data is used to cluster the trajectories into smaller groups, each corresponding to specific areas of the building. Distance metrics applied to magnetic field signals are used to identify geomagnetic similarities between different users’ trajectories. The building’s floor plan is then automatically created, which results in fingerprints labelled with physical locations. Experimental results show that the proposed algorithm achieved comparable floor plan and fingerprints to those acquired manually, allowing the conclusion that is possible to automate the setup process of infrastructure-free systems. With these results, this solution can be applied in any fingerprinting-based indoor positioning system

    Crowdsource Based Indoor Localization by Uncalibrated Heterogeneous Wi-Fi Devices

    Get PDF
    corecore