17 research outputs found

    Robust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radar

    Get PDF
    Constant false alarm rate (CFAR) algorithms using a local training window are widely used for ship detection with synthetic aperture radar (SAR) imagery. However, when the density of the targets is high, such as in busy shipping lines and crowded harbors, the background statistics may be contaminated by the presence of nearby targets in the training window. Recently, a robust CFAR detector based on truncated statistics (TS) was proposed. However, the truncation of data in the format of polarimetric covariance matrices is much more complicated with respect to the truncation of intensity (single polarization) data. In this article, a polarimetric whitening filter TS CFAR (PWF-TS-CFAR) is proposed to estimate the background parameters accurately in the contaminated sea clutter for PolSAR imagery. The CFAR detector uses a polarimetric whitening filter (PWF) to turn the multidimensional problem to a 1-D case. It uses truncation to exclude possible statistically interfering outliers and uses TS to model the remaining background samples. The algorithm does not require prior knowledge of the interfering targets, and it is performed iteratively and adaptively to derive better estimates of the polarimetric covariance matrix (although this is computationally expensive). The PWF-TS-CFAR detector provides accurate background clutter modeling, a stable false alarm property, and improves the detection performance in high-target-density situations. RadarSat2 data are used to verify our derivations, and the results are in line with the theory

    CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images Based on Whitening Filter

    Get PDF
    Polarimetric whitening filter (PWF) can be used to filter polarimetric synthetic aperture radar (PolSAR) images to improve the contrast between ships and sea clutter background. For this reason, the output of the filter can be used to detect ships. This paper deals with the setting of the threshold over PolSAR images filtered by the PWF. Two parameter-constant false alarm rate (2P-CFAR) is a common detection method used on whitened polarimetric images. It assumes that the probability density function (PDF) of the filtered image intensity is characterized by a log-normal distribution. However, this assumption does not always hold. In this paper, we propose a systemic analytical framework for CFAR algorithms based on PWF or multi-look PWF (MPWF). The framework covers the entire log-cumulants space in terms of the textural distributions in the product model, including the constant, gamma, inverse gamma, Fisher, beta, inverse beta, and generalized gamma distributions (GΞ“Ds). We derive the analytical forms of the PDF for each of the textural distributions and the probability of false alarm (PFA). Finally, the threshold is derived by fixing the false alarm rate (FAR). Experimental results using both the simulated and real data demonstrate that the derived expressions and CFAR algorithms are valid and robust

    PolSAR Ship Detection Based on Neighborhood Polarimetric Covariance Matrix

    Get PDF
    The detection of small ships in polarimetric synthetic aperture radar (PolSAR) images is still a topic for further investigation. Recently, patch detection techniques, such as superpixel-level detection, have stimulated wide interest because they can use the information contained in similarities among neighboring pixels. In this article, we propose a novel neighborhood polarimetric covariance matrix (NPCM) to detect the small ships in PolSAR images, leading to a significant improvement in the separability between ship targets and sea clutter. The NPCM utilizes the spatial correlation between neighborhood pixels and maps the representation for a given pixel into a high-dimensional covariance matrix by embedding spatial and polarization information. Using the NPCM formalism, we apply a standard whitening filter, similar to the polarimetric whitening filter (PWF). We show how the inclusion of neighborhood information improves the performance compared with the traditional polarimetric covariance matrix. However, this is at the expense of a higher computation cost. The theory is validated via the simulated and measured data under different sea states and using different radar platforms

    Joint Polarimetric Subspace Detector Based on Modified Linear Discriminant Analysis

    Get PDF
    Polarimetric synthetic aperture radar (PolSAR) is widely used in remote sensing and has important applications in the detection of ships. Although many polarimetric detectors have been proposed, they are not well combined. Recently, a polarimetric detection optimization filter (PDOF) was proposed that performs well in most environments. In this study, a novel subspace form of the PDOF (SPDOF) was further developed based on the Cauchy inequality and matrix decomposition theories, enhancing detection performance. Furthermore, a simple method to determine the optimal dimension of the subspace detector based on the trace ratio form was proposed by calculating the area under the receiver operating characteristic (ROC) curve, reaching the best detection performance among the subspaces of the detector. Moreover, to combine different subspace detectors, a modified linear discriminant analysis was proposed and developed to the diagonal loading detector (DLD) based on polarimetric subspaces. The experimental results demonstrate the superiority of these joint polarimetric subspace detectors. Most importantly, DLD solves for previous limitations due to the complex clutter background and achieves a performance comparable to that of the Wishart (Gaussian) distribution, particularly in the low target clutter ratio (TCR) case

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    A New Form of the Polarimetric Notch Filter

    Get PDF
    Ship detection using polarimetric synthetic radar (PolSAR) imagery attracts a lot of attention in recent years. Most notably, the detector polarimetric notch filter (PNF) has been demonstrated to be effective for ship detection in PolSAR imagery, which gives excellent performances. In this work, a mathematical form of one new PNF (NPNF) based on physical mechanisms of targets and clutter is further developed for partial targets. The different mechanisms have been revealed based on the projection matrix. The experimental results including simulated and measured data demonstrate that the NPNF exhibits a better performance than the original PNF

    ν›ˆλ ¨ 자료 μžλ™ μΆ”μΆœ μ•Œκ³ λ¦¬μ¦˜κ³Ό 기계 ν•™μŠ΅μ„ ν†΅ν•œ SAR μ˜μƒ 기반의 μ„ λ°• 탐지

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μžμ—°κ³Όν•™λŒ€ν•™ μ§€κ΅¬ν™˜κ²½κ³Όν•™λΆ€, 2021. 2. 김덕진.Detection and surveillance of vessels are regarded as a crucial application of SAR for their contribution to the preservation of marine resources and the assurance on maritime safety. Introduction of machine learning to vessel detection significantly enhanced the performance and efficiency of the detection, but a substantial majority of studies focused on modifying the object detector algorithm. As the fundamental enhancement of the detection performance would be nearly impossible without accurate training data of vessels, this study implemented AIS information containing real-time information of vessel’s movement in order to propose a robust algorithm which acquires the training data of vessels in an automated manner. As AIS information was irregularly and discretely obtained, the exact target interpolation time for each vessel was precisely determined, followed by the implementation of Kalman filter, which mitigates the measurement error of AIS sensor. In addition, as the velocity of each vessel renders an imprint inside the SAR image named as Doppler frequency shift, it was calibrated by restoring the elliptic satellite orbit from the satellite state vector and estimating the distance between the satellite and the target vessel. From the calibrated position of the AIS sensor inside the corresponding SAR image, training data was directly obtained via internal allocation of the AIS sensor in each vessel. For fishing boats, separate information system named as VPASS was applied for the identical procedure of training data retrieval. Training data of vessels obtained via the automated training data procurement algorithm was evaluated by a conventional object detector, for three detection evaluating parameters: precision, recall and F1 score. All three evaluation parameters from the proposed training data acquisition significantly exceeded that from the manual acquisition. The major difference between two training datasets was demonstrated in the inshore regions and in the vicinity of strong scattering vessels in which land artifacts, ships and the ghost signals derived from them were indiscernible by visual inspection. This study additionally introduced a possibility of resolving the unclassified usage of each vessel by comparing AIS information with the accurate vessel detection results.μ „μ²œν›„ 지ꡬ κ΄€μΈ‘ μœ„μ„±μΈ SARλ₯Ό ν†΅ν•œ μ„ λ°• νƒμ§€λŠ” ν•΄μ–‘ μžμ›μ˜ 확보와 해상 μ•ˆμ „ 보μž₯에 맀우 μ€‘μš”ν•œ 역할을 ν•œλ‹€. 기계 ν•™μŠ΅ κΈ°λ²•μ˜ λ„μž…μœΌλ‘œ 인해 선박을 λΉ„λ‘―ν•œ 사물 νƒμ§€μ˜ 정확도 및 νš¨μœ¨μ„±μ΄ ν–₯μƒλ˜μ—ˆμœΌλ‚˜, 이와 κ΄€λ ¨λœ λ‹€μˆ˜μ˜ μ—°κ΅¬λŠ” 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ κ°œλŸ‰μ— μ§‘μ€‘λ˜μ—ˆλ‹€. κ·ΈλŸ¬λ‚˜, 탐지 μ •ν™•λ„μ˜ 근본적인 ν–₯상은 μ •λ°€ν•˜κ²Œ μ·¨λ“λœ λŒ€λŸ‰μ˜ ν›ˆλ ¨μžλ£Œ μ—†μ΄λŠ” λΆˆκ°€λŠ₯ν•˜κΈ°μ—, λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ„ λ°•μ˜ μ‹€μ‹œκ°„ μœ„μΉ˜, 속도 정보인 AIS 자료λ₯Ό μ΄μš©ν•˜μ—¬ 인곡 지λŠ₯ 기반의 μ„ λ°• 탐지 μ•Œκ³ λ¦¬μ¦˜μ— μ‚¬μš©λ  ν›ˆλ ¨μžλ£Œλ₯Ό μžλ™μ μœΌλ‘œ μ·¨λ“ν•˜λŠ” μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ•ˆν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•΄ 이산적인 AIS 자료λ₯Ό SAR μ˜μƒμ˜ μ·¨λ“μ‹œκ°μ— λ§žμΆ”μ–΄ μ •ν™•ν•˜κ²Œ λ³΄κ°„ν•˜κ³ , AIS μ„Όμ„œ μžμ²΄κ°€ κ°€μ§€λŠ” 였차λ₯Ό μ΅œμ†Œν™”ν•˜μ˜€λ‹€. λ˜ν•œ, μ΄λ™ν•˜λŠ” μ‚°λž€μ²΄μ˜ μ‹œμ„  μ†λ„λ‘œ 인해 λ°œμƒν•˜λŠ” λ„ν”ŒλŸ¬ 편이 효과λ₯Ό λ³΄μ •ν•˜κΈ° μœ„ν•΄ SAR μœ„μ„±μ˜ μƒνƒœ 벑터λ₯Ό μ΄μš©ν•˜μ—¬ μœ„μ„±κ³Ό μ‚°λž€μ²΄ μ‚¬μ΄μ˜ 거리λ₯Ό μ •λ°€ν•˜κ²Œ κ³„μ‚°ν•˜μ˜€λ‹€. μ΄λ ‡κ²Œ κ³„μ‚°λœ AIS μ„Όμ„œμ˜ μ˜μƒ λ‚΄μ˜ μœ„μΉ˜λ‘œλΆ€ν„° μ„ λ°• λ‚΄ AIS μ„Όμ„œμ˜ 배치λ₯Ό κ³ λ €ν•˜μ—¬ μ„ λ°• 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ ν›ˆλ ¨μžλ£Œ ν˜•μ‹μ— λ§žμΆ”μ–΄ ν›ˆλ ¨μžλ£Œλ₯Ό μ·¨λ“ν•˜κ³ , 어선에 λŒ€ν•œ μœ„μΉ˜, 속도 정보인 VPASS 자료 μ—­μ‹œ μœ μ‚¬ν•œ λ°©λ²•μœΌλ‘œ κ°€κ³΅ν•˜μ—¬ ν›ˆλ ¨μžλ£Œλ₯Ό μ·¨λ“ν•˜μ˜€λ‹€. AIS μžλ£Œλ‘œλΆ€ν„° μ·¨λ“ν•œ ν›ˆλ ¨μžλ£ŒλŠ” κΈ°μ‘΄ λ°©λ²•λŒ€λ‘œ μˆ˜λ™ μ·¨λ“ν•œ ν›ˆλ ¨μžλ£Œμ™€ ν•¨κ»˜ 인곡 지λŠ₯ 기반 사물 탐지 μ•Œκ³ λ¦¬μ¦˜μ„ 톡해 정확도λ₯Ό ν‰κ°€ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό, μ œμ‹œλœ μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œ μ·¨λ“ν•œ ν›ˆλ ¨ μžλ£ŒλŠ” μˆ˜λ™ μ·¨λ“ν•œ ν›ˆλ ¨ 자료 λŒ€λΉ„ 더 높은 탐지 정확도λ₯Ό λ³΄μ˜€μœΌλ©°, μ΄λŠ” 기쑴의 사물 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ 평가 μ§€ν‘œμΈ 정밀도, μž¬ν˜„μœ¨κ³Ό F1 scoreλ₯Ό 톡해 μ§„ν–‰λ˜μ—ˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆν•œ ν›ˆλ ¨μžλ£Œ μžλ™ 취득 κΈ°λ²•μœΌλ‘œ 얻은 선박에 λŒ€ν•œ ν›ˆλ ¨μžλ£ŒλŠ” 특히 기쑴의 μ„ λ°• 탐지 κΈ°λ²•μœΌλ‘œλŠ” 뢄별이 μ–΄λ €μ› λ˜ ν•­λ§Œμ— μΈμ ‘ν•œ μ„ λ°•κ³Ό μ‚°λž€μ²΄ μ£Όλ³€μ˜ μ‹ ν˜Έμ— λŒ€ν•œ μ •ν™•ν•œ 뢄별 κ²°κ³Όλ₯Ό λ³΄μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” 이와 ν•¨κ»˜, μ„ λ°• 탐지 결과와 ν•΄λ‹Ή 지역에 λŒ€ν•œ AIS 및 VPASS 자료λ₯Ό μ΄μš©ν•˜μ—¬ μ„ λ°•μ˜ 미식별성을 νŒμ •ν•  수 μžˆλŠ” κ°€λŠ₯μ„± λ˜ν•œ μ œμ‹œν•˜μ˜€λ‹€.Chapter 1. Introduction - 1 - 1.1 Research Background - 1 - 1.2 Research Objective - 8 - Chapter 2. Data Acquisition - 10 - 2.1 Acquisition of SAR Image Data - 10 - 2.2 Acquisition of AIS and VPASS Information - 20 - Chapter 3. Methodology on Training Data Procurement - 26 - 3.1 Interpolation of Discrete AIS Data - 29 - 3.1.1 Estimation of Target Interpolation Time for Vessels - 29 - 3.1.2 Application of Kalman Filter to AIS Data - 34 - 3.2 Doppler Frequency Shift Correction - 40 - 3.2.1 Theoretical Basis of Doppler Frequency Shift - 40 - 3.2.2 Mitigation of Doppler Frequency Shift - 48 - 3.3 Retrieval of Training Data of Vessels - 53 - 3.4 Algorithm on Vessel Training Data Acquisition from VPASS Information - 61 - Chapter 4. Methodology on Object Detection Architecture - 66 - Chapter 5. Results - 74 - 5.1 Assessment on Training Data - 74 - 5.2 Assessment on AIS-based Ship Detection - 79 - 5.3 Assessment on VPASS-based Fishing Boat Detection - 91 - Chapter 6. Discussions - 110 - 6.1 Discussion on AIS-Based Ship Detection - 110 - 6.2 Application on Determining Unclassified Vessels - 116 - Chapter 7. Conclusion - 125 - κ΅­λ¬Έ μš”μ•½λ¬Έ - 128 - Bibliography - 130 -Maste

    Introduction to radar scattering application in remote sensing and diagnostics: Review

    Get PDF
    The manuscript reviews the current literature on scattering applications of RADAR (Radio Detecting And Ranging) in remote sensing and diagnostics. This paper gives prime features for a variety of RADAR applications ranging from forest and climate monitoring to weather forecast, sea status, planetary information, and mapping of natural disasters such as the ones caused by earthquakes. Both the fundamental parameters involved in scattering mechanisms of RADAR applications and the factors affecting RADAR performances are also discusse

    Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

    Get PDF
    Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization
    corecore