592 research outputs found

    Design of automatic vision-based inspection system for solder joint segmentation

    Get PDF
    Purpose: Computer vision has been widely used in the inspection of electronic components. This paper proposes a computer vision system for the automatic detection, localisation, and segmentation of solder joints on Printed Circuit Boards (PCBs) under different illumination conditions. Design/methodology/approach: An illumination normalization approach is applied to an image, which can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image the same as in the corresponding image under normal lighting conditions. Consequently special lighting and instrumental setup can be reduced in order to detect solder joints. These normalised images are insensitive to illumination variations and are used for the subsequent solder joint detection stages. In the segmentation approach, the PCB image is transformed from an RGB color space to a YIQ color space for the effective detection of solder joints from the background. Findings: The segmentation results show that the proposed approach improves the performance significantly for images under varying illumination conditions. Research limitations/implications: This paper proposes a front-end system for the automatic detection, localisation, and segmentation of solder joint defects. Further research is required to complete the full system including the classification of solder joint defects. Practical implications: The methodology presented in this paper can be an effective method to reduce cost and improve quality in production of PCBs in the manufacturing industry. Originality/value: This research proposes the automatic location, identification and segmentation of solder joints under different illumination conditions

    Visual Inspection System To Detect Connector Tilts In PCBAs [TS156. V844 2005 f rb] [Microfiche 7845].

    Get PDF
    Sistem pemeriksaan visual automatic memainkan peranan penting dalam bahagian tapisan kualiti di industri eletronik. AVI’s are playing important roles in quality inspection in the electronic industry

    Automated robotic inspection system for electronic manufacturing

    Get PDF
    An automated robotic inspection system for electronic manufacturing has been developed to identify pin defects of IC packages mounted on printed circuit boards using surface mount technology. The automated robotic inspection system consists of two robots, a computer, a CCD camera with frame gabber for image acquisition, and a customized windows program using neural network for on-line defect identification. Gray scale images of the pins on IC packages are acquired using ambient light. The images are filtered and formatted to appropriate size, so that Matlab neural network tool could be used. The images are used to train neural networks using Matlab\u27s Bayesian Regularization module. Optimal network was found to be a single-layer network with three outputs for each IC investigated. The weights and biases of each of the ICs investigated and the matrices of gray scale values for the IC images are saved as text files. A customized windows program uses these text files for on-line defect identification. The defect identification for the networks was found to be 100 percent for the two ICs investigated. The analysis and integration of an automated robotic inspection system for on-line monitoring of electronic manufacturing using neural networks is presented in this work

    Non-contact Microelectronic Device Inspection Systems And Methods

    Get PDF
    Non-contact microelectronic device inspection systems and methods are discussed and provided. Some embodiments include a method of generating a virtual reference device (or chip). This approach uses a statistics to find devices in a sample set that are most similar and then averages their time domain signals to generate the virtual reference. Signals associated with the virtual reference can then be correlated with time domain signals obtained from the packages under inspection to obtain a quality signature. Defective and non-defective devices are separated by estimating a beta distribution that fits a quality signature histogram of inspected packages and determining a cutoff threshold for an acceptable quality signature. Other aspects, features, and embodiments are also claimed and described.Georgia Tech Research Corporatio

    Automatic surface defect quantification in 3D

    Get PDF
    Three-dimensional (3D) non-contact optical methods for surface inspection are of significant interest to many industrial sectors. Many aspects of manufacturing processes have become fully automated resulting in high production volumes. However, this is not necessarily the case for surface defect inspection. Existing human visual analysis of surface defects is qualitative and subject to varying interpretation. Automated 3D non-contact analysis should provide a robust and systematic quantitative approach. However, different 3D optical measurement technologies use different physical principles, interact with surfaces and defects in diverse ways, leading to variation in measurement data. Instrument s native software processing of the data may be non-traceable in nature, leading to significant uncertainty about data quantisation. Sub-millimetric level surface defect artefacts have been created using Rockwell and Vickers hardness testing equipment on various substrates. Four different non-contact surface measurement instruments (Alicona InfiniteFocus G4, Zygo NewView 5000, GFM MikroCAD Lite and Heliotis H3) have been utilized to measure different defect artefacts. The four different 3D optical instruments are evaluated by calibrated step-height created using slipgauges and reference defect artefacts. The experimental results are compared to select the most suitable instrument capable of measuring surface defects in robust manner. This research has identified a need for an automatic tool to quantify surface defect and thus a mathematical solution has been implemented for automatic defect detection and quantification (depth, area and volume) in 3D. A simulated defect softgauge with a known geometry has been developed in order to verify the implemented algorithm and provide mathematical traceability. The implemented algorithm has been identified as a traceable, highly repeatable, and high speed solution to quantify surface defect in 3D. Various industrial components with suspicious features and solder joints on PCB are measured and quantified in order to demonstrate applicability

    Automated optical inspection of solder paste based on 2.5D visual images

    Get PDF
    In this paper, a special technique for the inspection of solder paste using directional LED lighting is presented. Conventional optical inspection method would depend on an image acquired from a camera mounted from the top. This 2D inspection of solder paste based on images is fast but is limited to defect such as bridge or no solder. Defects related to the volume of the printed solder paste or unevenness of the paste cannot be treated from a top image. The developed technique of this paper would involve the use of special directional side lighting to acquire two-and-a-half dimensional (2.5D) images from above the solder paste block. A sequence of three images is acquired and image processing is carried out for defect detection of the printed solder paste. The acquired images would highlight the geometrical features of the solder paste block. Solder paste inspection is then carried out based on the highlighted features. The proposed method can handle other types of defects that cannot be treated by conventional top light images. ©2009 IEEE.published_or_final_versio

    Locally Adaptive Stereo Vision Based 3D Visual Reconstruction

    Get PDF
    abstract: Using stereo vision for 3D reconstruction and depth estimation has become a popular and promising research area as it has a simple setup with passive cameras and relatively efficient processing procedure. The work in this dissertation focuses on locally adaptive stereo vision methods and applications to different imaging setups and image scenes. Solder ball height and substrate coplanarity inspection is essential to the detection of potential connectivity issues in semi-conductor units. Current ball height and substrate coplanarity inspection tools are expensive and slow, which makes them difficult to use in a real-time manufacturing setting. In this dissertation, an automatic, stereo vision based, in-line ball height and coplanarity inspection method is presented. The proposed method includes an imaging setup together with a computer vision algorithm for reliable, in-line ball height measurement. The imaging setup and calibration, ball height estimation and substrate coplanarity calculation are presented with novel stereo vision methods. The results of the proposed method are evaluated in a measurement capability analysis (MCA) procedure and compared with the ground-truth obtained by an existing laser scanning tool and an existing confocal inspection tool. The proposed system outperforms existing inspection tools in terms of accuracy and stability. In a rectified stereo vision system, stereo matching methods can be categorized into global methods and local methods. Local stereo methods are more suitable for real-time processing purposes with competitive accuracy as compared with global methods. This work proposes a stereo matching method based on sparse locally adaptive cost aggregation. In order to reduce outlier disparity values that correspond to mis-matches, a novel sparse disparity subset selection method is proposed by assigning a significance status to candidate disparity values, and selecting the significant disparity values adaptively. An adaptive guided filtering method using the disparity subset for refined cost aggregation and disparity calculation is demonstrated. The proposed stereo matching algorithm is tested on the Middlebury and the KITTI stereo evaluation benchmark images. A performance analysis of the proposed method in terms of the I0 norm of the disparity subset is presented to demonstrate the achieved efficiency and accuracy.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Visual Inspection System To Detect Connector Tilts In Pcbas

    Get PDF
    Sistem pemeriksaan visual automatic memainkan peranan penting dalam bahagian tapisan kualiti di industri eletronik. AVI’s are playing important roles in quality inspection in the electronic industry
    corecore