154 research outputs found

    Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery

    Get PDF
    The use of a low-cost five-band multispectral camera (RedEdge, MicaSense, USA) and a low-altitude airborne platform is investigated for the detection of plant stress caused by yellow rust disease in winter wheat for sustainable agriculture. The research is mainly focused on: (i) determining whether or not healthy and yellow rust infected wheat plants can be discriminated; (ii) selecting spectral band and Spectral Vegetation Index (SVI) with a strong discriminating capability; (iii) developing a low-cost yellow rust monitoring system for use at farmland scales. An experiment was carefully designed by infecting winter wheat with different levels of yellow rust inoculum, where aerial multispectral images under different developmental stages of yellow rust were captured by an Unmanned Aerial Vehicle at an altitude of 16–24m with a ground resolution of 1–1.5cm/pixel. An automated yellow rust detection system is developed by learning (via random forest classifier) from labelled UAV aerial multispectral imagery. Experimental results indicate that: (i) good classification performance (with an average Precision, Recall and Accuracy of 89.2%, 89.4% and 89.3%) was achieved by the developed yellow rust monitoring at a diseased stage (45 days after inoculation); (ii) the top three SVIs for separating healthy and yellow rust infected wheat plants are RVI, NDVI and OSAVI; while the top two spectral bands are NIR and Red. The learnt system was also applied to the whole farmland of interest with a promising monitoring result. It is anticipated that this study by seamlessly integrating low-cost multispectral camera, low-altitude UAV platform and machine learning techniques paves the way for yellow rust monitoring at farmland scales

    Detection of Xylella fastidiosa in almond orchards by synergic use of an epidemic spread model and remotely sensed plant traits

    Get PDF
    The early detection of Xylella fastidiosa (Xf) infections is critical to the management of this dangerous plan pathogen across the world. Recent studies with remote sensing (RS) sensors at different scales have shown that Xf-infected olive trees have distinct spectral features in the visible and infrared regions (VNIR). However, further work is needed to integrate remote sensing in the management of plant disease epidemics. Here, we research how the spectral changes picked up by different sets of RS plant traits (i.e., pigments, structural or leaf protein content), can help capture the spatial dynamics of Xf spread. We coupled a spatial spread model with the probability of Xf-infection predicted by a RS-driven support vector machine (RS-SVM) model. Furthermore, we analyzed which RS plant traits contribute most to the output of the prediction models. For that, in almond orchards affected by Xf (n = 1426 trees), we conducted a field campaign simultaneously with an airborne campaign to collect high-resolution thermal images and hyperspectral images in the visible-near-infrared (VNIR, 400–850 nm) and short-wave infrared regions (SWIR, 950–1700 nm). The best performing RS-SVM model (OA = 75%; kappa = 0.50) included as predictors leaf protein content, nitrogen indices (NIs), fluorescence and a thermal indicator (Tc), alongside pigments and structural parameters. Leaf protein content together with NIs contributed 28% to the explanatory power of the model, followed by chlorophyll (22%), structural parameters (LAI and LIDFa), and chlorophyll indicators of photosynthetic efficiency. Coupling the RS model with an epidemic spread model increased the accuracy (OA = 80%; kappa = 0.48). In the almond trees where the presence of Xf was assayed by qPCR (n = 318 trees), the combined RS-spread model yielded an OA of 71% and kappa = 0.33, which is higher than the RS-only model and visual inspections (both OA = 64–65% and kappa = 0.26–31). Our work demonstrates how combining spatial epidemiological models and remote sensing can lead to highly accurate predictions of plant disease spatial distribution.Data collection was partially supported by the European Union's Horizon 2020 research and innovation program through grant agreements POnTE (635646) and XF-ACTORS (727987). R. Calderón was supported by a post-doctoral research fellowship from the Alfonso Martin Escudero Foundation (Spain)

    A comprehensive review of fruit and vegetable classification techniques

    Get PDF
    Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable classification methods have been developed for quality assessment and robotic harvesting but the current state-of-the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and offers significantly hyperdimensional features, which is one of the major challenges with current machine learning approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional features which require significant computational power to optimise with such features. In recent years numerous machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many different feature description methods for fruit and vegetable classification in many real-life applications. This paper presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for classifying fruit and vegetable

    Nondestructive Multivariate Classification of Codling Moth Infested Apples Using Machine Learning and Sensor Fusion

    Get PDF
    Apple is the number one on the list of the most consumed fruits in the United States. The increasing market demand for high quality apples and the need for fast, and effective quality evaluation techniques have prompted research into the development of nondestructive evaluation methods. Codling moth (CM), Cydia pomonella L. (Lepidoptera: Tortricidae), is the most devastating pest of apples. Therefore, this dissertation is focused on the development of nondestructive methods for the detection and classification of CM-infested apples. The objective one in this study was aimed to identify and characterize the source of detectable vibro-acoustic signals coming from CM-infested apples. A novel approach was developed to correlate the larval activities to low-frequency vibro-acoustic signals, by capturing the larval activities using a digital camera while simultaneously registering the signal patterns observed in the contact piezoelectric sensors on apple surface. While the larva crawling was characterized by the low amplitude and higher frequency (around 4 Hz) signals, the chewing signals had greater amplitude and lower frequency (around 1 Hz). In objective two and three, vibro-acoustic and acoustic impulse methods were developed to classify CM-infested and healthy apples. In the first approach, the identified vibro-acoustic patterns from the infested apples were used for the classification of the CM-infested and healthy signal data. The classification accuracy was as high as 95.94% for 5 s signaling time. For the acoustic impulse method, a knocking test was performed to measure the vibration/acoustic response of the infested apple fruit to a pre-defined impulse in comparison to that of a healthy sample. The classification rate obtained was 99% for a short signaling time of 60-80 ms. In objective four, shortwave near infrared hyperspectral imaging (SWNIR HSI) in the wavelength range of 900-1700 nm was applied to detect CM infestation at the pixel level for the three apple cultivars reaching an accuracy of up to 97.4%. In objective five, the physicochemical characteristics of apples were predicted using HSI method. The results showed the correlation coefficients of prediction (Rp) up to 0.90, 0.93, 0.97, and 0.91 for SSC, firmness, pH and moisture content, respectively. Furthermore, the effect of long-term storage (20 weeks) at three different storage conditions (0 °C, 4 °C, and 10 °C) on CM infestation and the detectability of the infested apples was studied. At a constant storage temperature the detectability of infested samples remained the same for the first three months then improved in the fourth month followed by a decrease until the end of the storage. Finally, a sensor data fusion method was developed which showed an improvement in the classification performance compared to the individual methods. These findings indicated there is a high potential of acoustic and NIR HSI methods for detecting and classifying CM infestation in different apple cultivars

    New strategies for row-crop management based on cost-effective remote sensors

    Get PDF
    Agricultural technology can be an excellent antidote to resource scarcity. Its growth has led to the extensive study of spatial and temporal in-field variability. The challenge of accurate management has been addressed in recent years through the use of accurate high-cost measurement instruments by researchers. However, low rates of technological adoption by farmers motivate the development of alternative technologies based on affordable sensors, in order to improve the sustainability of agricultural biosystems. This doctoral thesis has as main objective the development and evaluation of systems based on affordable sensors, in order to address two of the main aspects affecting the producers: the need of an accurate plant water status characterization to perform a proper irrigation management and the precise weed control. To address the first objective, two data acquisition methodologies based on aerial platforms have been developed, seeking to compare the use of infrared thermometry and thermal imaging to determine the water status of two most relevant row-crops in the region, sugar beet and super high-density olive orchards. From the data obtained, the use of an airborne low-cost infrared sensor to determine the canopy temperature has been validated. Also the reliability of sugar beet canopy temperature as an indicator its of water status has been confirmed. The empirical development of the Crop Water Stress Index (CWSI) has also been carried out from aerial thermal imaging combined with infrared temperature sensors and ground measurements of factors such as water potential or stomatal conductance, validating its usefulness as an indicator of water status in super high-density olive orchards. To contribute to the development of precise weed control systems, a system for detecting tomato plants and measuring the space between them has been developed, aiming to perform intra-row treatments in a localized and precise way. To this end, low cost optical sensors have been used and compared with a commercial LiDAR laser scanner. Correct detection results close to 95% show that the implementation of these sensors can lead to promising advances in the automation of weed control. The micro-level field data collected from the evaluated affordable sensors can help farmers to target operations precisely before plant stress sets in or weeds infestation occurs, paving the path to increase the adoption of Precision Agriculture techniques

    A Data-driven Approach for Detecting Stress in Plants Using Hyperspectral Imagery

    Get PDF
    A phenotype is an observable characteristic of an individual and is a function of its genotype and its growth environment. Individuals with different genotypes are impacted differently by exposure to the same environment. Therefore, phenotypes are often used to understand morphological and physiological changes in plants as a function of genotype and biotic and abiotic stress conditions. Phenotypes that measure the level of stress can help mitigate the adverse impacts on the growth cycle of the plant. Image-based plant phenotyping has the potential for early stress detection by means of computing responsive phenotypes in a non-intrusive manner. A large number of plants grown and imaged under a controlled environment in a high-throughput plant phenotyping (HTPP) system are increasingly becoming accessible to research communities. They can be useful to compute novel phenotypes for early stress detection. In early stages of stress induction, plants manifest responses in terms of physiological changes rather than morphological, making it difficult to detect using visible spectrum cameras which use only three wide spectral bands in the 380nm - 740 nm range. In contrast, hyperspectral imaging can capture a broad range of wavelengths (350nm - 2500nm) with narrow spectral bands (5nm). Hyperspectral imagery (HSI), therefore, provides rich spectral information which can help identify and track even small changes in plant physiology in response to stress. In this research, a data-driven approach has been developed to identify regions in plants that manifest abnormal reflectance patterns after stress induction. Reflectance patterns of age-matched unstressed plants are first characterized. The normal and stressed reflectance patterns are used to train a classifier that can predict if a point in the plant is stressed or not. Stress maps of a plant can be generated from its hyperspectral image and can be used to track the temporal propagation of stress. These stress maps are used to compute novel phenotypes that represent the level of stress in a plant and the stress trajectory over time. The data-driven approach is validated using a dataset of sorghum plants exposed to drought stress in a LemnaTec Scanalyzer 3D HTPP system. Advisers: Ashok Samal and Sruti Das Choudhur

    Hyperspectral Modeling of Relative Water Content and Nitrogen Content in Sorghum and Maize

    Get PDF
    Sorghum and maize are two of the most important cereal grains worldwide. They are important industrially, and also serve as staple crops for millions of people across the world. With climate change, increasing frequencies of droughts, and crops being planted on more marginal land, it is important to breed sorghum and maize cultivars that are tolerant to drought and low fertility soils. However, one of the largest constraints to the breeding process is the cycle time between cultivar development and release. Early evaluation of cultivars with increased the ability to maintain water status under drought and increases nitrogen contents under nitrogen stress could be the key to decreasing breeding cycle time. New tools for non-destructive, high throughput phenotyping are needed to evaluate new cultivars. These new tools can also be used for monitoring and management of crops to improve productivity. Hyperspectral imaging holds promise as one tool to improve the speed and accuracy of predicting numerous plant traits including abiotic stress tolerance characteristics. In this thesis, hyperspectral imaging projects were designed to develop and test prediction models for relative water content (RWC) and nitrogen (N) content of sorghum and maize. The first study utilized three different genotypes of sorghum in an automated hyperspectral imaging system in greenhouses at Purdue University. From this study, models were developed for relative water content and nitrogen content using the data from all three genotypes collectively as well as the data from each genotype individually. Models developed using the spectral and morphological features obtained from the hyperspectral images are predictive of both relative water content and nitrogen content. The coefficients of determination (R2) for all graphs comparing the predicted relative water content to the reference relative water content of sorghum averaged 0.90 while the same graphs for maize averaged 0.64. The coefficients of determination for all graphs comparing the predicted nitrogen content to the reference nitrogen content of sorghum averaged 0.85 while the same graphs for maize averaged 0.61. Models built only with the spectral features for sorghum were also predictive of both relative water content and nitrogen content. The coefficients of determination for all graphs comparing the predicted relative water content to the reference relative water content of sorghum averaged 0.91 while the same graphs for nitrogen content in sorghum averaged 0.85. The nitrogen content models developed using the data from the Tx7000 genotype are highly predictive of both Tx7000 and B35 but not highly predictive of Tx623. However, models developed using the data from Tx623 are highly predictive of all three genotypes. Another important finding from this study was that the water and nitrogen signals overlap and the most predictive models are developed from data where water and nitrogen vary continuously. Models to predict one factor that do not account for variation in the other factor are not very accurate. The second experiment utilized hyperspectral imaging to characterize RWC and N content of maize. Models for RWC and N content were developed using spectral and morphological features. The models developed for maize were not as predictive as the models for sorghum but they were still predictive of RWC and N content for the models developed using all six genotypes and the models developed using the data from the individual genotypes. Models built using the four half-sibling genotypes were not more predictive than the models based on all six genotypes. The final portion of this thesis explored predictions across species using both the sorghum and maize data. We found that models developed using only sorghum were not predictive of the maize reference measurements. However, when the sorghum and maize data were combined and used to generate models, both the RWC model and the N content model were highly predictive for both reference measurements

    Image Processing for Machine Vision Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study

    Get PDF
    Bidirectional generative adversarial networks (BiGANs) and cycle generative adversarial networks (CycleGANs) are two emerging machine learning models that, up to now, have been used as generative models, i.e., to generate output data sampled from a target probability distribution. However, these models are also equipped with encoding modules, which, after weakly supervised training, could be, in principle, exploited for the extraction of hidden features from the input data. At the present time, how these extracted features could be effectively exploited for classification tasks is still an unexplored field. Hence, motivated by this consideration, in this paper, we develop and numerically test the performance of a novel inference engine that relies on the exploitation of BiGAN and CycleGAN-learned hidden features for the detection of COVID-19 disease from other lung diseases in computer tomography (CT) scans. In this respect, the main contributions of the paper are twofold. First, we develop a kernel density estimation (KDE)-based inference method, which, in the training phase, leverages the hidden features extracted by BiGANs and CycleGANs for estimating the (a priori unknown) probability density function (PDF) of the CT scans of COVID-19 patients and, then, in the inference phase, uses it as a target COVID-PDF for the detection of COVID diseases. As a second major contribution, we numerically evaluate and compare the classification accuracies of the implemented BiGAN and CycleGAN models against the ones of some state-of-the-art methods, which rely on the unsupervised training of convolutional autoencoders (CAEs) for attaining feature extraction. The performance comparisons are carried out by considering a spectrum of different training loss functions and distance metrics. The obtained classification accuracies of the proposed CycleGAN-based (resp., BiGAN-based) models outperform the corresponding ones of the considered benchmark CAE-based models of about 16% (resp., 14%)

    Application of hyperspectral imaging combined with chemometrics for the non-destructive evaluation of the quality of fruit in postharvest

    Full text link
    Tesis por compendio[ES] El objetivo de esta tesis doctoral es evaluar la técnica de imagen hiperespectral en el rango visible e infrarrojo cercano, en combinación con técnicas quimiométricas para la evaluación de la calidad de la fruta en poscosecha de manera eficaz y sostenible. Con este fin, se presentan diferentes estudios en los que se evalúa la calidad de algunas frutas que por su valor económico, estratégico o social, son de especial importancia en la Comunidad Valenciana como son el caqui 'Rojo Brillante', la granada 'Mollar de Elche', el níspero 'Algerie' o diferentes cultivares de nectarina. En primer lugar se llevó a cabo la monitorización de la calidad poscosecha de nectarinas 'Big Top' y 'Magique' usando imagen hiperespectral en reflectancia y transmitancia. Al mismo tiempo se evaluó la transmitancia para la detección de huesos abiertos. Se llevó a cabo también un estudio para distinguir los cultivares 'Big Top' y "Diamond Ray", los cuales poseen un aspecto muy similar pero sabor diferente. En cuanto al caqui 'Rojo Brillante', la imagen hiperespectral fue estudiada por una parte para monitorear su madurez, y por otra parte para evaluar la astringencia de esta fruta, que debe ser completamente eliminada antes de su comercialización. Las propiedades físico-químicas de la granada 'Mollar de Elche' fueron evaluadas usando imagen de color e hiperespectral durante su madurez usando la información de la fruta intacta y de los arilos. Finalmente, esta técnica se usó para caracterizar e identificar los defectos internos y externos del níspero 'Algerie'. En la predicción de los índices de calidad IQI y RPI usando imagen en reflectancia y transmitancia se obtuvieron valores de R2 alrededor de 0,90 y en la discriminación por firmeza, una precisión entorno al 95 % usando longitudes de onda seleccionadas. En cuanto a la detección de huesos abiertos, el uso de la imagen hiperespectral en transmitancia obtuvo un 93,5 % de clasificación correcta de frutas con hueso normal y 100 % con hueso abierto usando modelos PLS-DA y 7 longitudes de onda. Los resultados obtenidos en la clasificación de los cultivares 'Big Top' y 'Diamond Ray' mostraron una fiabilidad superior al 96,0 % mediante el uso de modelos PLS-DA y 14 longitudes de onda seleccionadas, superando a la imagen de color (56,9 %) y a un panel entrenado (54,5 %). Con respecto al caqui, los resultados obtenidos indicaron que es posible distinguir entre tres estados de madurez con una precisión del 96,0 % usando modelos QDA y se predijo su firmeza obteniendo un valor de R2 de 0,80 usando PLS-R. En cuanto a la astringencia, se llevaron a cabo dos estudios similares en los que en el primero se discriminó la fruta de acuerdo al tiempo de tratamiento con altas concentraciones de CO2 con una precisión entorno al 95,0 % usando QDA. En el segundo se discriminó la fruta de acuerdo a un valor de contenido en taninos (0,04 %) y se determinó qué área de la fruta era mejor para realizar esta discriminación. Así se obtuvo una precisión del 86,9 % usando la zona media y 23 longitudes de onda. Los resultados obtenidos para la granada indicaron que la imagen de color e hiperespectral poseen una precisión similar en la predicción de las propiedades fisicoquímicas usando PLS-R y la información de la fruta intacta. Sin embargo, cuando se usó la información de los arilos, la imagen hiperespectral fue más precisa. En cuanto a la discriminación del estado de madurez usando PLS-DA, la imagen hiperespectral ofreció mayor precisión, 95,0 %, usando la información de la fruta intacta y del 100 % usando la de los arilos. Finalmente, los resultados obtenidos para el níspero indicaron que la imagen hiperespectral junto con el método de clasificación XGBOOST pudo discriminar entre muestras con y sin defectos con una precisión del 97,5 % y entre muestras sin defectos o con defectos internos o externos con una precisión del 96,7 %. Además fue posible distinguir entre los dife[CA] L'objectiu de la present tesi doctoral se centra en avaluar la capacitat de la imatge hiperespectral en el rang visible i infraroig pròxim, en combinació amb mètodes quimiomètrics, per a l'avaluació de la qualitat de la fruita en post collita de manera eficaç i sostenible. A aquest efecte, es presenten diferents estudis en els quals s'avalua la qualitat d'algunes fruites que pel seu valor econòmic, estratègic o social, són d'especial importància a la Comunitat Valenciana com són el caqui 'Rojo Brillante', la magrana 'Mollar de Elche', el nispro 'Algerie' o diferents cultivares de nectarina. En primer lloc es va dur a terme la monitorització de la qualitat post collita de nectarines 'Big Top' i 'Magique' per mitjà d'imatge hiperespectral en reflectància i trasnmitancia. Així mateix es va avaluar la transmitància per a la detecció d'ossos oberts. Es va dur a terme també un estudi per distingir els cultivares 'Big Top' i 'Diamond Ray', els quals posseeixen un aspecte molt semblant però sabor diferent. Pel que fa al caqui 'Rojo Brillante', la imatge hiperespectral va ser estudiada d'una banda per a monitoritzar la seua maduresa, i per un altre costat per avaluar l'astringència, que ha de ser completament eliminada abans de la seua comercialització. Les propietats fisicoquímiques de la magrana 'Mollar de Elche' van ser avaluades per la imatge de color i hiperespectral durant la seua maduresa usant la informació de la fruita intacta i els arils. Finalment, aquesta tècnica es va fer servir per caracteritzar i identificar els defectes interns i externs del nispro 'Algerie'. En la predicció dels índexs de qualitat IQI i RPI usant imatge en reflectància com en trasnmitancia es van obtindre valors de R2 al voltant de 0,90 i en la discriminació per fermesa una precisió entorn del 95,0 % utilitzant longituds d'ona seleccionades. Pel que fa a la detecció d'ossos oberts, l'ús de la imatge hiperespectral en transmitància va obtindre un 93,5 % classificació correcta de fruites amb os normal i 100 % amb os obert usant models PLS-DA i 7 longituds d'ona. Els resultats obtinguts en la classificació dels cultivares 'Big Top' i 'Diamond Ray' van mostrar una fiabilitat superior al 96,0 % per mitjà de l'ús de models PLS-DA i 14 longituds d'ona, superant a la imatge de color (56,9 %) i a un panell sensorial entrenat (54,5 %). Quant al caqui, els resultats obtinguts van indicar que és possible distingir entre tres estats de maduresa amb una precisió del 96,0 % usant models QDA i es va predir la seua fermesa obtenint un valor de R2 de 0,80 usant PLS-R. Pel que fa a l'astringència, es van dur a terme dos estudis similars en què el primer es va discriminar la fruita d'acord al temps de tractament amb altes concentracions de CO2 amb una precisió al voltant del 95,0 % usant QDA. En el segon, es va discriminar la fruita d'acord a un valor de contingut en tanins (0,04 %) i es va determinar quina part de la fruita era millor per a realitzar aquesta discriminació. Així es va obtindre una precisió del 86,9 % usant la zona mitjana i 23 longituds d'ona. Els resultats obtinguts per la magrana van indicar que la imatge de color i hiperespectral posseïxen una precisió semblant a la predicció de les propietats fisicoquímiques usant PLS-R i la informació de la fruita intacta. No obstant això, quan es va usar la informació dels arils, la imatge hiperespectral va ser més precisa. Quant a la discriminació de l'estat de maduresa usant PLS-DA, la imatge hiperespectral va oferir major precisió (95,0 %) usant la informació de la fruita intacta i del 100 % usant la dels arils. Finalment, els resultats obtinguts pel nispro indiquen que la imatge hiperespectral juntament amb el mètode de classificació XGBOOST va poder discriminar entre mostres amb i sense defectes amb una precisió del 97,5 % i entre mostres sense defectes o amb defectes interns o externs amb una precisió del 96,7 %. A més, va ser possible distingir entre[EN] The objective of this doctoral thesis is to evaluate the potential of the hyperspectral imaging in the visible and near infrared range in combination with chemometrics for the assessment of the postharvest quality of fruit in a non-destructive, efficient and sustainable manner. To this end, different studies are presented in which the quality of some fruits is evaluated. Due to their economic, strategic or social value, the selected fruits are of special importance in the Valencian Community, such as Persimmon 'Rojo Brillante', the pomegranate 'Mollar de Elche', the loquat 'Algerie' or different nectarine cultivars. First, the quality monitoring of 'Big Top' and 'Magique' nectarines was carried out using reflectance and transmittance images. At the same time, transmittance was evaluated for the detection of split pit. In addition, a classification was performed to distinguish the 'Big Top' and 'Diamond Ray' cultivars, which look very similar but have different flavour. Whereas that for the 'Rojo Brillante' persimmon, the hyperspectral imaging was studied on the one hand to monitor its maturity, and on the other hand to evaluate the astringency of this fruit, which must be completely eliminated before its commercialization. The physicochemical properties of the 'Mollar de Elche' pomegranate were evaluated by means of hyperspectral and colour imaging during its maturity using the information from the intact fruit and arils. Finally, this technique was used to characterise and identify the internal and external defects of the 'Algerie' loquat. In the prediction of the IQI and RPI quality indexes using reflectance and transmittance images, R2 values around 0.90 were obtained and in the discrimination according to firmness, accuracy around 95.0 % using selected wavelengths was obtained. Regarding the split pit detection, the use of the hyperspectral image in transmittance mode obtained a 93.5 % of fruits with normal bone correctly classified and 100% with split pit using PLS-DA models and 7 wavelengths. The results obtained in the classification of 'Big Top' and 'Diamond Ray' fruits show accuracy higher than 96.0 % by using PLS-DA models and 14 selected wavelengths, higher than the obtained with colour image (56.9 %) and a trained panel (54.5 %). According to persimmon, the results obtained indicated that it is possible to distinguish between three states of maturity with an accuracy of 96.0 % using QDA models and its firmness was predicted obtaining a R2 value of 0.80 using PLS-R. Regarding astringency, two similar studies were carried out. In the first study, the fruit was classified according to the time of treatment with high concentrations of CO2 with a precision of around 95.0 % using QDA. In the second, the fruit was discriminated according to a threshold value of soluble tannins (0.04 %) and was determined what fruit area was better to perform this discrimination. Thus, an accuracy of 86.9 % was obtained using the middle area and 23 wavelengths. The results obtained for the pomegranate indicated that the use of colour and hyperspectral images have a similar precision in the prediction of physicochemical properties using PLS-R and the intact fruit information. However, when the information from the arils was used, the hyperspectral image was more accurate. Regarding the discrimination by the state of maturity using PLS-DA, the hyperspectral image offered greater precision, of 95.0 % using the information from the intact fruit and 100 % using that from the arils. Finally, the results obtained for the 'Algerie' loquat indicated that the hyperspectral image with the XGBOOST classification method could discriminate between sound samples and samples with defects with accuracy of 97.5 % and between sound samples or samples with internal or external defects with an accuracy of 96.7 %. It was also possible to distinguish between the different defects with an accuracy of 95.9 %.Munera Picazo, SM. (2019). Application of hyperspectral imaging combined with chemometrics for the non-destructive evaluation of the quality of fruit in postharvest [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/125954TESISCompendi
    • …
    corecore