1,693 research outputs found

    Developing Future Smart Parking Solutions for Hangzhou\u27s IoT Town

    Get PDF
    With help from the Smart Cities Research Center of Zhejiang Province, this project aimed to assess and improve current smart parking solutions in Hangzhou, China. The team consulted industry experts and research students to gauge the direction of smart technology applicable to future parking solutions. The team analyzed results from interviews, customer surveys, and observations to infer needs for improved user experience. Research performed on future technologies allowed the team to offer a system framework recommendation with modern smart parking features for a characteristic town in Hangzhou. The project team discovered that a future smart parking system could integrate 5G, High-Frequency RFID, and non-contact payment methods to address the shortcomings of current smart parking systems

    A study of remotely booking slot for vehicle using Internet of Things

    Get PDF
    Internet Of Things (IoT) is a continually growing area which aids us to unite diverse objects. The proposed system exhibits the universal notion of utilizing cloud-based intellectual automotive car parking facilities in smart cities as a notable implementation of the IoT. Such services demonstrate to be a noteworthy part of the IoT and thus serving users in no small amount due to its pure commerce positioned qualities. Electromagnetic fields are being used by RFID to detect and track tags ascribed to objects automatically. The RFID technology is used in this system along with suitable IoT protocols to evade human interference, which reduces the cost. Information is bartered using readers and tags. RFID and IoT technologies are mainly used to automate the guide systems and make them strong and more accurate. Open Service Gateways can be effectively used for this module. This system established on the consequence of IoT and the purposes are solving the chaos, bewilderment, and extensive backlogs in parking spaces like malls and business parks that are customary as a consequence of the increased use of automobiles. The proposed work aims to solve these problems and offer car drivers a hassle-free and instantaneous car parking experience. While a number of nodes are positioned depends on topographical restrictions, positioning of prominent anchor sensor nodes in the smart parking is a primary factor against which the efficiency and cost of the parking system hang. A Raspberry Pi would act as a mini-computer in our system. A suitable smallest path methodology would be cast-off to obtain the shortest distance between the user and every car park in the system. Hence, the pausing time of the user is decreased. This work furthermore includes the practice of remotely booking of a slot with the collaboration of android application exercising smartphones for the communication between the Smart Parking system and the user

    Proximal business intelligence on the semantic web

    Get PDF
    This is the post-print version of this article. The official version can be accessed from the link below - Copyright @ 2010 Springer.Ubiquitous information systems (UBIS) extend current Information System thinking to explicitly differentiate technology between devices and software components with relation to people and process. Adapting business data and management information to support specific user actions in context is an ongoing topic of research. Approaches typically focus on providing mechanisms to improve specific information access and transcoding but not on how the information can be accessed in a mobile, dynamic and ad-hoc manner. Although web ontology has been used to facilitate the loading of data warehouses, less research has been carried out on ontology based mobile reporting. This paper explores how business data can be modeled and accessed using the web ontology language and then re-used to provide the invisibility of pervasive access; uncovering more effective architectural models for adaptive information system strategies of this type. This exploratory work is guided in part by a vision of business intelligence that is highly distributed, mobile and fluid, adapting to sensory understanding of the underlying environment in which it operates. A proof-of concept mobile and ambient data access architecture is developed in order to further test the viability of such an approach. The paper concludes with an ontology engineering framework for systems of this type – named UBIS-ONTO
    • …
    corecore