42 research outputs found

    Analysis of methods

    Get PDF
    Information is one of an organization's most important assets. For this reason the development and maintenance of an integrated information system environment is one of the most important functions within a large organization. The Integrated Information Systems Evolution Environment (IISEE) project has as one of its primary goals a computerized solution to the difficulties involved in the development of integrated information systems. To develop such an environment a thorough understanding of the enterprise's information needs and requirements is of paramount importance. This document is the current release of the research performed by the Integrated Development Support Environment (IDSE) Research Team in support of the IISEE project. Research indicates that an integral part of any information system environment would be multiple modeling methods to support the management of the organization's information. Automated tool support for these methods is necessary to facilitate their use in an integrated environment. An integrated environment makes it necessary to maintain an integrated database which contains the different kinds of models developed under the various methodologies. In addition, to speed the process of development of models, a procedure or technique is needed to allow automatic translation from one methodology's representation to another while maintaining the integrity of both. The purpose for the analysis of the modeling methods included in this document is to examine these methods with the goal being to include them in an integrated development support environment. To accomplish this and to develop a method for allowing intra-methodology and inter-methodology model element reuse, a thorough understanding of multiple modeling methodologies is necessary. Currently the IDSE Research Team is investigating the family of Integrated Computer Aided Manufacturing (ICAM) DEFinition (IDEF) languages IDEF(0), IDEF(1), and IDEF(1x), as well as ENALIM, Entity Relationship, Data Flow Diagrams, and Structure Charts, for inclusion in an integrated development support environment

    Development of new methods in biomedical engineering for brain connectivity biomarkers in epilepsy and other pathological conditions

    Get PDF
    243 p.The aim of this thesis is to humbly explore the application of diverse methodologies and theories comingfrom Computer Sciences, Mathematics and Physics in the field of neurosciences, with an special focus onneurodegenerative diseases.In this thesis brain network analysis was used to unveil functional and structural patterns in bothpathological and healthy brains. We explore in a different manner various aspects related with theepilepsy, AD and healthy aging

    Analysing system behaviour by automatic benchmarking of system-level provenance

    Get PDF
    Provenance is a term originating from the work of art. It aims to provide a chain of information of a piece of arts from its creation to the current status. It records all the historic information relating to this piece of art, including the storage locations, ownership, buying prices, etc. until the current status. It has a very similar definition in data processing and computer science. It is used as the lineage of data in computer science to provide either reproducibility or tracing of activities happening in runtime for a different purpose. Similar to the provenance used in art, provenance used in computer science and data processing field describes how a piece of data was created, passed around, modified, and reached the current state. Also, it provides information on who is responsible for certain activities and other related information. It acts as metadata on components in a computer environment. As the concept of provenance is to record all related information of some data, the size of provenance itself is generally proportional to the amount of data processing that took place. It generally tends to be a large set of data and is hard to analyse. Also, in the provenance collecting process, not all information is useful for all purposes. For example, if we just want to trace all previous owners of a file, then all the storage location information may be ignored. To capture useful information and without needing to handle a large amount of information, researchers and developers develop different provenance recording tools that only record information needed by particular applications with different means and mechanisms throughout the systems. This action allows a lighter set of information for analysis but it results in non-standard provenance information and general users may not have a clear view on which tools are better for some purposes. For example, if we want to identify if certain action sequences have been performed in a process and who is accountable for these actions for security analysis, we have no idea which tools should be trusted to provide the correct set of information. Also, it is hard to compare the tools as there is not much common standard around. With the above need in mind, this thesis concentrate on providing an automated system ProvMark to benchmark the tools. This helps to show the strengths and weaknesses of their provenance results in different scenarios. It also allows tool developers to verify their tools and allows end-users to compare the tools at the same level to choose a suitable one for the purpose. As a whole, the benchmarking based on the expressiveness of the tools on different scenarios shows us the right choice of provenance tools on specific usage

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data
    corecore