35,584 research outputs found

    Fully integrated digital microfluidics platform for automated immunoassay; a versatile tool for rapid, specific detection of a wide range of pathogens

    Get PDF
    © 2018 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.With the tangible threat posed by the release of chemical and biological warfare (CBW) agents, detection of airborne pathogens is a critical military and security concern. Recent air sampling techniques developed for biocollection take advantage of Electrowetting on Dielectric (EWOD) to recover material, producing highly concentrated droplet samples. Bespoke EWOD-based digital microfluidics platforms are very well suited to take full advantage of the microlitre concentrated droplet resulting from this recovery process. In this paper we present a free-standing, fully automated DMF platform for immunoassay. Using this system, we demonstrate the automated detection of four classes of CBW agent simulant biomolecules and organisms each representing credible threat agents. Taking advantage of the full magnetic separation process with antibody-bound microbeads, rapid and complete separation of specific target antigen can be achieved with minimal washing steps allowing for very rapid detection. Here, we report clear detection of four categories of antigens achieved with assay completion times of between six and ten minutes. Detection of HSA, Bacillus atrophaeus (BG spores), MS2 bacteriophage and Escherichia coli are demonstrated with estimated limit of detection of respectively 30 ng ml -1, 4 × 10 4 cfu ml -1, 10 6 pfu ml -1 and 2 × 10 7 cfu ml -1. The fully-integrated portable platform described in this paper is highly compatible with the next generation of electrowetting-coupled air samplers and thus shows strong potential toward future in-field deployable biodetection systems and could have key implication in life-changing sectors such as healthcare, environment or food security.Peer reviewe

    A digital microarray using interferometric detection of plasmonic nanorod labels

    Full text link
    DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and dynamic range of traditional fluorescence microarrays compared to other techniques have been the technology's Achilles' Heel, and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule ('digital') regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform's primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about three orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10x objective lens. This approach does not require any chemical enhancement such as silver deposition, and scans arrays with a throughput similar to commercial fluorescence devices. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about one million directly from a single scan

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Robust visualization and discrimination of nanoparticles by interferometric imaging

    Full text link
    Single-molecule and single-nanoparticle biosensors are a growing frontier in diagnostics. Digital biosensors are those which enumerate all specifically immobilized biomolecules or biological nanoparticles, and thereby achieve limits of detection usually beyond the reach of ensemble measurements. Here we review modern optical techniques for single nanoparticle detection and describe the single-particle interferometric reflectance imaging sensor (SP-IRIS). We present challenges associated with reliably detecting faint nanoparticles with SP-IRIS, and describe image acquisition processes and software modifications to address them. Specifically, we describe a image acquisition processing method for the discrimination and accurate counting of nanoparticles that greatly reduces both the number of false positives and false negatives. These engineering improvements are critical steps in the translation of SP-IRIS towards applications in medical diagnostics.R01 AI096159 - NIAID NIH HHSFirst author draf

    A digital microarray using interferometric detection of plasmonic nanorod labels

    Full text link
    DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and dynamic range of traditional fluorescence microarrays compared to other techniques have been the technology's Achilles' Heel, and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule ('digital') regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform's primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about three orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10x objective lens. This approach does not require any chemical enhancement such as silver deposition, and scans arrays with a throughput similar to commercial fluorescence devices. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about one million directly from a single scan.First author draf

    Digital microarrays: single-molecule readout with interferometric detection of plasmonic nanorod labels

    Full text link
    DNA and protein microarrays are a high-throughput technology that allow the simultaneous quantification of tens of thousands of different biomolecular species. The mediocre sensitivity and limited dynamic range of traditional fluorescence microarrays compared to other detection techniques have been the technology’s Achilles’ heel and prevented their adoption for many biomedical and clinical diagnostic applications. Previous work to enhance the sensitivity of microarray readout to the single-molecule (“digital”) regime have either required signal amplifying chemistry or sacrificed throughput, nixing the platform’s primary advantages. Here, we report the development of a digital microarray which extends both the sensitivity and dynamic range of microarrays by about 3 orders of magnitude. This technique uses functionalized gold nanorods as single-molecule labels and an interferometric scanner which can rapidly enumerate individual nanorods by imaging them with a 10× objective lens. This approach does not require any chemical signal enhancement such as silver deposition and scans arrays with a throughput similar to commercial fluorescence scanners. By combining single-nanoparticle enumeration and ensemble measurements of spots when the particles are very dense, this system achieves a dynamic range of about 6 orders of magnitude directly from a single scan. As a proof-of-concept digital protein microarray assay, we demonstrated detection of hepatitis B virus surface antigen in buffer with a limit of detection of 3.2 pg/mL. More broadly, the technique’s simplicity and high-throughput nature make digital microarrays a flexible platform technology with a wide range of potential applications in biomedical research and clinical diagnostics.The authors wish to thank Oguzhan Avci and Jacob Trueb for thoughtful comments and suggestions regarding numerical optimization of the optical system. This work was funded in part by a research contract with ASELSAN, Inc. and the Wallace H. Coulter Foundation 2010 Coulter Translational Award. (ASELSAN, Inc.; Wallace H. Coulter Foundation Coulter Translational Award)Accepted manuscrip
    • …
    corecore