160 research outputs found

    Integration of torque blending and slip control using nonlinear model predictive control

    Get PDF
    Antilock Braking System (ABS) is an important active safety feature in preventing accidents during emergency braking. Electrified vehicles which include both hydraulic and regenerative braking systems provide the opportunity to implement brake torque blending during slip control operation. This study evaluates the design and implementation of a new torque allocation algorithm using a Nonlinear Model Predictive Control (NMPC) strategy that can run in real-time, with results showing that wheel-locking can be prevented while also permitting for energy recuperation

    MATMPC - A MATLAB Based Toolbox for Real-time Nonlinear Model Predictive Control

    Full text link
    In this paper we introduce MATMPC, an open source software built in MATLAB for nonlinear model predictive control (NMPC). It is designed to facilitate modelling, controller design and simulation for a wide class of NMPC applications. MATMPC has a number of algorithmic modules, including automatic differentiation, direct multiple shooting, condensing, linear quadratic program (QP) solver and globalization. It also supports a unique Curvature-like Measure of Nonlinearity (CMoN) MPC algorithm. MATMPC has been designed to provide state-of-the-art performance while making the prototyping easy, also with limited programming knowledge. This is achieved by writing each module directly in MATLAB API for C. As a result, MATMPC modules can be compiled into MEX functions with performance comparable to plain C/C++ solvers. MATMPC has been successfully used in operating systems including WINDOWS, LINUX AND OS X. Selected examples are shown to highlight the effectiveness of MATMPC

    A Real-time MHE and NMPC Scheme for Wind Turbine Control

    Get PDF
    Among the several problems arising in the Airborne Wind Energy paradigm, an essential one is the control of the tethered airfoil trajectory during power generation. Tethered flight is a fast, strongly nonlinear, unstable and constrained process, motivating control approaches based on fast Non-linear Model Predictive Control. In this paper, a computationally efficient model is proposed, based on Differential-Algebraic equations. A control scheme based on Nonlinear Model Predictive Control (NMPC) and an estimator based on Moving Horizon Estimation (MHE) is proposed to handle the wind turbulences. In order to make a real-time application of Non-linear Model Predictive Control possible, a Real-Time Iteration scheme is proposed

    Inexact Newton based Lifted Implicit Integrators for fast Nonlinear MPC

    Get PDF
    Nonlinear Model Predictive Control (NMPC) requires the online solution of an Optimal Control Problem (OCP) at every sampling instant. In the context of multiple shooting, a numerical integration is needed to discretize the continuous time dynamics. For stiff, implicitly defined or differential-algebraic systems, implicit schemes are preferred to carry out the integration. The Newton-type optimization method and the implicit integrator then form a nested Newton scheme, solving the optimization and integration problem on two different levels. In recent research, an exact lifting technique was proposed to improve the computational efficiency of the latter framework. Inspired by that work, this paper presents a novel class of lifted implicit integrators, using an inexact Newton method. An additional iterative scheme for computing the sensitivities is proposed, which provides similar properties as the exact lifted integrator at considerably reduced computational costs. Using the example of an industrial robot, computational speedups of up to factor 8 are reported. The proposed methods have been implemented in the open-source ACADO code generation software
    corecore