67 research outputs found

    Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance

    Get PDF
    In real computational world, scheduling is a decision making process. This is nothing but a systematic schedule through which a large numbers of tasks are assigned to the processors. Due to the resource limitation, creation of such schedule is a real challenge. This creates the interest of developing a qualitative scheduler for the processors. These processors are either single or parallel. One of the criteria for improving the efficiency of scheduler is waiting time variance (WTV). Minimizing the WTV of a task is a NP-hard problem. Achieving the quality of service (QoS) in a single or parallel processor by minimizing the WTV is a problem of task scheduling. To enhance the performance of a single or parallel processor, it is required to develop a stable and none overlap scheduler by minimizing WTV. An automated scheduler\u27s performance is always measured by the attributes of QoS. One of the attributes of QoS is ‘Timeliness’. First, this chapter presents the importance of heuristics with five heuristic-based solutions. Then applies these heuristics on 1‖WTV minimization problem and three heuristics with a unique task distribution mechanism on Qm|prec|WTV minimization problem. The experimental result shows the performance of heuristic in the form of graph for consonant problems

    Exact and Heuristic Algorithms for Energy-Efficient Scheduling

    Get PDF
    The combined increase of energy demand and environmental pollution at a global scale is entailing a rethinking of the production models in sustainable terms. As a consequence, energy suppliers are starting to adopt strategies that flatten demand peaks in power plants by means of pricing policies that stimulate a change in the consumption practices of customers. A representative example is the Time-of-Use (TOU)-based tariffs policy, which encourages electricity usage at off-peak hours by means of low prices, while penalizing peak hours with higher prices. To avoid a sharp increment of the energy supply costs, manufacturing industry must carefully reschedule the production process, by shifting it towards less expensive periods. The TOU-based tariffs policy induces an implicit partitioning of the time horizon of the production into a set of time slots, each associated with a non-negative cost that becomes a part of the optimization objective. This thesis focuses on a representative bi-objective energy-efficient job scheduling problem on parallel identical machines under TOU-based tariffs by delving into the description of its inherent properties, mathematical formulations, and solution approaches. Specifically, the thesis starts by reviewing the flourishing literature on the subject, and providing a useful framework for theoreticians and practitioners. Subsequently, it describes the considered problem and investigates its theoretical properties. In the same chapter, it presents a first mathematical model for the problem, as well as a possible reformulation that exploits the structure of the solution space so as to achieve a considerable increase in compactness. Afterwards, the thesis introduces a sophisticated heuristic scheme to tackle the inherent hardness of the problem, and an exact algorithm that exploits the mathematical models. Then, it shows the computational efficiency of the presented solution approaches on a wide test benchmark. Finally, it presents a perspective on future research directions for the class of energy-efficient scheduling problems under TOU-based tariffs as a whole

    Combinatorial Optimization

    Get PDF
    [no abstract available

    Machine scheduling and Lagrangian relaxation

    Get PDF

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set
    corecore