909 research outputs found

    Scalar Levin-Type Sequence Transformations

    Get PDF
    Sequence transformations are important tools for the convergence acceleration of slowly convergent scalar sequences or series and for the summation of divergent series. Transformations that depend not only on the sequence elements or partial sums sns_n but also on an auxiliary sequence of so-called remainder estimates ωn\omega_n are of Levin-type if they are linear in the sns_n, and nonlinear in the ωn\omega_n. Known Levin-type sequence transformations are reviewed and put into a common theoretical framework. It is discussed how such transformations may be constructed by either a model sequence approach or by iteration of simple transformations. As illustration, two new sequence transformations are derived. Common properties and results on convergence acceleration and stability are given. For important special cases, extensions of the general results are presented. Also, guidelines for the application of Levin-type sequence transformations are discussed, and a few numerical examples are given.Comment: 59 pages, LaTeX, invited review for J. Comput. Applied Math., abstract shortene

    Wilsonian renormalization, differential equations and Hopf algebras

    Full text link
    In this paper, we present an algebraic formalism inspired by Butcher's B-series in numerical analysis and the Connes-Kreimer approach to perturbative renormalization. We first define power series of non linear operators and propose several applications, among which the perturbative solution of a fixed point equation using the non linear geometric series. Then, following Polchinski, we show how perturbative renormalization works for a non linear perturbation of a linear differential equation that governs the flow of effective actions. Then, we define a general Hopf algebra of Feynman diagrams adapted to iterations of background field effective action computations. As a simple combinatorial illustration, we show how these techniques can be used to recover the universality of the Tutte polynomial and its relation to the qq-state Potts model. As a more sophisticated example, we use ordered diagrams with decorations and external structures to solve the Polchinski's exact renormalization group equation. Finally, we work out an analogous construction for the Schwinger-Dyson equations, which yields a bijection between planar ϕ3\phi^{3} diagrams and a certain class of decorated rooted trees.Comment: 42 pages, 26 figures in PDF format, extended version of a talk given at the conference "Combinatorics and physics" held at Max Planck Institut fuer Mathematik in Bonn in march 2007, some misprints correcte

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    Glosarium Matematika

    Get PDF

    Improvements to the construction of binary black hole initial data

    Get PDF
    Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the Spectral Einstein Code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.Comment: 28 pages, 13 figures, 1 tabl

    A new generalized domain decomposition strategy for the efficient parallel solution of the FDS-pressure equation. Part I: Theory, Concept and Implementation

    Get PDF
    Due to steadily increasing problem sizes and accuracy requirements as well as storage restrictions on single-processor systems, the efficient numerical simulation of realistic fire scenarios can only be obtained on modern high-performance computers based on multi-processor architectures. The transition to those systems requires the elaborate parallelization of the underlying numerical concepts which must guarantee the same result as a potentially corresponding serial execution and preserve the convergence order of the original serial method. Because of its low degree of inherent parallelizm, especially the efficient parallelization of the elliptic pressure equation is still a big challenge in many simulation programs for fire-induced flows such as the Fire Dynamics Simulator (FDS). In order to avoid losses of accuracy or numerical instabilities, the parallelization process must definitely take into account the strong global character of the physical pressure. The current parallel FDS solver is based on a relatively coarse-grained parallellization concept which can’t guarantee these requirements in all cases. Therefore, an alternative parallel pressure solver, ScaRC, is proposed which ensures a high degree of global coupling and a good computational performance at the same time. Part I explains the theory, concept and implementation of this new strategy, whereas Part II describes a series of validation and verification tests to proof its correctness
    corecore