30,407 research outputs found

    An asymptotic analysis of distributed nonparametric methods

    Get PDF
    We investigate and compare the fundamental performance of several distributed learning methods that have been proposed recently. We do this in the context of a distributed version of the classical signal-in-Gaussian-white-noise model, which serves as a benchmark model for studying performance in this setting. The results show how the design and tuning of a distributed method can have great impact on convergence rates and validity of uncertainty quantification. Moreover, we highlight the difficulty of designing nonparametric distributed procedures that automatically adapt to smoothness

    MATS: Inference for potentially Singular and Heteroscedastic MANOVA

    Get PDF
    In many experiments in the life sciences, several endpoints are recorded per subject. The analysis of such multivariate data is usually based on MANOVA models assuming multivariate normality and covariance homogeneity. These assumptions, however, are often not met in practice. Furthermore, test statistics should be invariant under scale transformations of the data, since the endpoints may be measured on different scales. In the context of high-dimensional data, Srivastava and Kubokawa (2013) proposed such a test statistic for a specific one-way model, which, however, relies on the assumption of a common non-singular covariance matrix. We modify and extend this test statistic to factorial MANOVA designs, incorporating general heteroscedastic models. In particular, our only distributional assumption is the existence of the group-wise covariance matrices, which may even be singular. We base inference on quantiles of resampling distributions, and derive confidence regions and ellipsoids based on these quantiles. In a simulation study, we extensively analyze the behavior of these procedures. Finally, the methods are applied to a data set containing information on the 2016 presidential elections in the USA with unequal and singular empirical covariance matrices

    Nonparametric and Varying Coefficient Modal Regression

    Full text link
    In this article, we propose a new nonparametric data analysis tool, which we call nonparametric modal regression, to investigate the relationship among interested variables based on estimating the mode of the conditional density of a response variable Y given predictors X. The nonparametric modal regression is distinguished from the conventional nonparametric regression in that, instead of the conditional average or median, it uses the "most likely" conditional values to measures the center. Better prediction performance and robustness are two important characteristics of nonparametric modal regression compared to traditional nonparametric mean regression and nonparametric median regression. We propose to use local polynomial regression to estimate the nonparametric modal regression. The asymptotic properties of the resulting estimator are investigated. To broaden the applicability of the nonparametric modal regression to high dimensional data or functional/longitudinal data, we further develop a nonparametric varying coefficient modal regression. A Monte Carlo simulation study and an analysis of health care expenditure data demonstrate some superior performance of the proposed nonparametric modal regression model to the traditional nonparametric mean regression and nonparametric median regression in terms of the prediction performance.Comment: 33 page
    • …
    corecore