12,847 research outputs found

    AT-GIS: highly parallel spatial query processing with associative transducers

    Get PDF
    Users in many domains, including urban planning, transportation, and environmental science want to execute analytical queries over continuously updated spatial datasets. Current solutions for largescale spatial query processing either rely on extensions to RDBMS, which entails expensive loading and indexing phases when the data changes, or distributed map/reduce frameworks, running on resource-hungry compute clusters. Both solutions struggle with the sequential bottleneck of parsing complex, hierarchical spatial data formats, which frequently dominates query execution time. Our goal is to fully exploit the parallelism offered by modern multicore CPUs for parsing and query execution, thus providing the performance of a cluster with the resources of a single machine. We describe AT-GIS, a highly-parallel spatial query processing system that scales linearly to a large number of CPU cores. ATGIS integrates the parsing and querying of spatial data using a new computational abstraction called associative transducers(ATs). ATs can form a single data-parallel pipeline for computation without requiring the spatial input data to be split into logically independent blocks. Using ATs, AT-GIS can execute, in parallel, spatial query operators on the raw input data in multiple formats, without any pre-processing. On a single 64-core machine, AT-GIS provides 3× the performance of an 8-node Hadoop cluster with 192 cores for containment queries, and 10× for aggregation queries

    Optimistic Parallelization of Floating-Point Accumulation

    Get PDF
    Floating-point arithmetic is notoriously non-associative due to the limited precision representation which demands intermediate values be rounded to fit in the available precision. The resulting cyclic dependency in floating-point accumulation inhibits parallelization of the computation, including efficient use of pipelining. In practice, however, we observe that floating-point operations are "mostly" associative. This observation can be exploited to parallelize floating-point accumulation using a form of optimistic concurrency. In this scheme, we first compute an optimistic associative approximation to the sum and then relax the computation by iteratively propagating errors until the correct sum is obtained. We map this computation to a network of 16 statically-scheduled, pipelined, double-precision floating-point adders on the Virtex-4 LX160 (-12) device where each floating-point adder runs at 296 MHz and has a pipeline depth of 10. On this 16 PE design, we demonstrate an average speedup of 6× with randomly generated data and 3-7× with summations extracted from Conjugate Gradient benchmarks

    Spaceborne memory organization, phase 1 Final report

    Get PDF
    Application of associative memories to data processing for future space vehicle

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    Storage of Natural Language Sentences in a Hopfield Network

    Full text link
    This paper look at how the Hopfield neural network can be used to store and recall patterns constructed from natural language sentences. As a pattern recognition and storage tool, the Hopfield neural network has received much attention. This attention however has been mainly in the field of statistical physics due to the model's simple abstraction of spin glass systems. A discussion is made of the differences, shown as bias and correlation, between natural language sentence patterns and the randomly generated ones used in previous experiments. Results are given for numerical simulations which show the auto-associative competence of the network when trained with natural language patterns.Comment: latex, 10 pages with 2 tex figures and a .bib file, uses nemlap.sty, to appear in Proceedings of NeMLaP-
    corecore