591 research outputs found

    An assistive robot to support dressing-strategies for planning and error handling

    Get PDF
    © 2016 IEEE. Assistive robots are emerging to address a social need due to changing demographic trends such as an ageing population. The main emphasis is to offer independence to those in need and to fill a potential labour gap in response to the increasing demand for caregiving. This paper presents work undertaken as part of a dressing task using a compliant robotic arm on a mannequin. Several strategies are explored on how to undertake this task with minimal complexity and a mix of sensors. A Vicon tracking system is used to determine the arm position of the mannequin for trajectory planning by means of waypoints. Methods of failure detection were explored through torque feedback and sensor tag data. A fixed vocabulary of recognised speech commands was implemented allowing the user to successfully correct detected dressing errors. This work indicates that low cost sensors and simple HRI strategies, without complex learning algorithms, could be used successfully in a robot assisted dressing task

    Adapting robot task planning to user preferences: an assistive shoe dressing example

    Get PDF
    The final publication is available at link.springer.comHealthcare robots will be the next big advance in humans’ domestic welfare, with robots able to assist elderly people and users with disabilities. However, each user has his/her own preferences, needs and abilities. Therefore, robotic assistants will need to adapt to them, behaving accordingly. Towards this goal, we propose a method to perform behavior adaptation to the user preferences, using symbolic task planning. A user model is built from the user’s answers to simple questions with a fuzzy inference system, and it is then integrated into the planning domain. We describe an adaptation method based on both the user satisfaction and the execution outcome, depending on which penalizations are applied to the planner’s rules. We demonstrate the application of the adaptation method in a simple shoe-fitting scenario, with experiments performed in a simulated user environment. The results show quick behavior adaptation, even when the user behavior changes, as well as robustness to wrong inference of the initial user model. Finally, some insights in a non-simulated world shoe-fitting setup are also provided.Peer ReviewedPostprint (author's final draft

    Adapting robot behavior to user preferences in assistive scenarios

    Get PDF
    Robotic assistants have inspired numerous books and science fiction movies. In the real world, these kinds of devices are a growing need in amongst the elderly, who while life continue requiring more assistance. While life expectancy is increasing, life quality is not necessarily doing so. Thus, we may find ourselves and our loved ones being dependent and needing another person to perform the most basic tasks, which has a strong psychological impact. Accordingly, assistive robots may be the definitive tool to give more quality of life by empowering dependent people and extending their independent living. Assisting users to perform daily activities requires adapting to them and their needs, as they might not be able to adapt to the robot. This thesis tackles adaptation and personalization issues through user preferences. We 'focus on physical tasks that involve close contact, as these present interesting challenges, and are of great importance for he user. Therefore, three tasks are mainly used throughout the thesis: assistive feeding, shoe fitting, and jacket dressing. We first describe a framework for robot behavior adaptation that illustrates how robots should be personalized for and by end- users or their assistants. Using this framework, non-technical users determine how !he robot should behave. Then, we define the concept of preference for assistive robotics scenarios and establish a taxonomy, which includes hierarchies and groups of preferences, grounding definitions and concepts. We then show how the preferences in the taxonomy are used with Al planning systems to adapt the robot behavior to the preferences of the user obtained from simple questions. Our algorithms allow for long-term adaptations as well as to cope with misinformed user models. We further integrate the methods with low-level motion primitives that provide a more robust adaptation and behavior while lowering the number of needed actions and demonstrations. Moreover, we perform a deeper analysis in Planning and preferences with the introduction of new algorithms to provide preference suggestions in planning domains. The thesis then concludes with a user study that evaluates the use of the preferences in the three real assistive robotics scenarios. The experiments show a clear understanding of the preferences of users, who were able to assess the impact of their preferences on the behavior of the robot. In summary, we provide tools and algorithms to design the robotic assistants of the future. Assistants that should be able to adapt to the assisted user needs and preferences, just as human assistants do nowadays.Els assistents robòtics han inspirat nombrosos llibres i pel·lícules de ciència-ficció al llarg de la història. Però tornant al món real, aquest tipus de dispositius s'estan tornant una necessitat per a una societat que envelleix a un ritme ràpid i que, per tant, requerirà més i més assistència. Mentre l'esperança de vida augmenta, la qualitat de vida no necessàriament ho fa. Per tant, ens podem trobar a nosaltres mateixos i als nostres estimats en una situació de dependència, necessitant una altra persona per poder fer les tasques més bàsiques, cosa que té un gran impacte psicològic. En conseqüència, els robots assistencials poden ser l'eina definitiva per proporcionar una millor qualitat de vida empoderant els usuaris i allargant la seva capacitat de viure independentment. L'assistència a persones per realitzar tasques diàries requereix adaptar-se a elles i les seves necessitats, donat que aquests usuaris no poden adaptar-se al robot. En aquesta tesi, abordem el problema de l'adaptació i la personalització d'un robot mitjançant preferències de l'usuari. Ens centrem en tasques físiques, que involucren contacte amb la persona, per les seves dificultats i importància per a l'usuari. Per aquest motiu, la tesi utilitzarà principalment tres tasques com a exemple: donar menjar, posar una sabata i vestir una jaqueta. Comencem definint un marc (framework) per a la personalització del comportament del robot que defineix com s'han de personalitzar els robots per usuaris i pels seus assistents. Amb aquest marc, usuaris sense coneixements tècnics són capaços de definir com s'ha de comportar el robot. Posteriorment definim el concepte de preferència per a robots assistencials i establim una taxonomia que inclou jerarquies i grups de preferències, els quals fonamenten les definicions i conceptes. Després mostrem com les preferències de la taxonomia s'utilitzen amb sistemes planificadors amb IA per adaptar el comportament del robot a les preferències de l'usuari, que s'obtenen mitjançant preguntes simples. Els nostres algorismes permeten l'adaptació a llarg termini, així com fer front a models d'usuari mal inferits. Aquests mètodes són integrats amb primitives a baix nivell que proporcionen una adaptació i comportament més robusts a la mateixa vegada que disminueixen el nombre d'accions i demostracions necessàries. També fem una anàlisi més profunda de l'ús de les preferències amb planificadors amb la introducció de nous algorismes per fer suggeriments de preferències en dominis de planificació. La tesi conclou amb un estudi amb usuaris que avalua l'ús de les preferències en les tres tasques assistencials. Els experiments demostren un clar enteniment de les preferències per part dels usuaris, que van ser capaços de discernir quan les seves preferències eren utilitzades. En resum, proporcionem eines i algorismes per dissenyar els assistents robòtics del futur. Uns assistents que haurien de ser capaços d'adaptar-se a les preferències i necessitats de l'usuari que assisteixen, tal com els assistents humans fan avui en dia

    Adapting robot behavior to user preferences in assistive scenarios

    Get PDF
    Aplicat embargament des de la data de defensa fins el 24 de juliol de 2020Robotic assistants have inspired numerous books and science fiction movies. In the real world, these kinds of devices are a growing need in amongst the elderly, who while life continue requiring more assistance. While life expectancy is increasing, life quality is not necessarily doing so. Thus, we may find ourselves and our loved ones being dependent and needing another person to perform the most basic tasks, which has a strong psychological impact. Accordingly, assistive robots may be the definitive tool to give more quality of life by empowering dependent people and extending their independent living. Assisting users to perform daily activities requires adapting to them and their needs, as they might not be able to adapt to the robot. This thesis tackles adaptation and personalization issues through user preferences. We 'focus on physical tasks that involve close contact, as these present interesting challenges, and are of great importance for he user. Therefore, three tasks are mainly used throughout the thesis: assistive feeding, shoe fitting, and jacket dressing. We first describe a framework for robot behavior adaptation that illustrates how robots should be personalized for and by end- users or their assistants. Using this framework, non-technical users determine how !he robot should behave. Then, we define the concept of preference for assistive robotics scenarios and establish a taxonomy, which includes hierarchies and groups of preferences, grounding definitions and concepts. We then show how the preferences in the taxonomy are used with Al planning systems to adapt the robot behavior to the preferences of the user obtained from simple questions. Our algorithms allow for long-term adaptations as well as to cope with misinformed user models. We further integrate the methods with low-level motion primitives that provide a more robust adaptation and behavior while lowering the number of needed actions and demonstrations. Moreover, we perform a deeper analysis in Planning and preferences with the introduction of new algorithms to provide preference suggestions in planning domains. The thesis then concludes with a user study that evaluates the use of the preferences in the three real assistive robotics scenarios. The experiments show a clear understanding of the preferences of users, who were able to assess the impact of their preferences on the behavior of the robot. In summary, we provide tools and algorithms to design the robotic assistants of the future. Assistants that should be able to adapt to the assisted user needs and preferences, just as human assistants do nowadays.Els assistents robòtics han inspirat nombrosos llibres i pel·lícules de ciència-ficció al llarg de la història. Però tornant al món real, aquest tipus de dispositius s'estan tornant una necessitat per a una societat que envelleix a un ritme ràpid i que, per tant, requerirà més i més assistència. Mentre l'esperança de vida augmenta, la qualitat de vida no necessàriament ho fa. Per tant, ens podem trobar a nosaltres mateixos i als nostres estimats en una situació de dependència, necessitant una altra persona per poder fer les tasques més bàsiques, cosa que té un gran impacte psicològic. En conseqüència, els robots assistencials poden ser l'eina definitiva per proporcionar una millor qualitat de vida empoderant els usuaris i allargant la seva capacitat de viure independentment. L'assistència a persones per realitzar tasques diàries requereix adaptar-se a elles i les seves necessitats, donat que aquests usuaris no poden adaptar-se al robot. En aquesta tesi, abordem el problema de l'adaptació i la personalització d'un robot mitjançant preferències de l'usuari. Ens centrem en tasques físiques, que involucren contacte amb la persona, per les seves dificultats i importància per a l'usuari. Per aquest motiu, la tesi utilitzarà principalment tres tasques com a exemple: donar menjar, posar una sabata i vestir una jaqueta. Comencem definint un marc (framework) per a la personalització del comportament del robot que defineix com s'han de personalitzar els robots per usuaris i pels seus assistents. Amb aquest marc, usuaris sense coneixements tècnics són capaços de definir com s'ha de comportar el robot. Posteriorment definim el concepte de preferència per a robots assistencials i establim una taxonomia que inclou jerarquies i grups de preferències, els quals fonamenten les definicions i conceptes. Després mostrem com les preferències de la taxonomia s'utilitzen amb sistemes planificadors amb IA per adaptar el comportament del robot a les preferències de l'usuari, que s'obtenen mitjançant preguntes simples. Els nostres algorismes permeten l'adaptació a llarg termini, així com fer front a models d'usuari mal inferits. Aquests mètodes són integrats amb primitives a baix nivell que proporcionen una adaptació i comportament més robusts a la mateixa vegada que disminueixen el nombre d'accions i demostracions necessàries. També fem una anàlisi més profunda de l'ús de les preferències amb planificadors amb la introducció de nous algorismes per fer suggeriments de preferències en dominis de planificació. La tesi conclou amb un estudi amb usuaris que avalua l'ús de les preferències en les tres tasques assistencials. Els experiments demostren un clar enteniment de les preferències per part dels usuaris, que van ser capaços de discernir quan les seves preferències eren utilitzades. En resum, proporcionem eines i algorismes per dissenyar els assistents robòtics del futur. Uns assistents que haurien de ser capaços d'adaptar-se a les preferències i necessitats de l'usuari que assisteixen, tal com els assistents humans fan avui en dia.Postprint (published version

    A taxonomy of preferences for physically assistive robots

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Assistive devices and technologies are getting common and some commercial products are starting to be available. However, the deployment of robots able to physically interact with a person in an assistive manner is still a challenging problem. Apart from the design and control, the robot must be able to adapt to the user it is attending in order to become a useful tool for caregivers. This robot behavior adaptation comes through the definition of user preferences for the task such that the robot can act in the user’s desired way. This article presents a taxonomy of user preferences for assistive scenarios, including physical interactions, that may be used to improve robot decision-making algorithms. The taxonomy categorizes the preferences based on their semantics and possible uses. We propose the categorization in two levels of application (global and specific) as well as two types (primary and modifier). Examples of real preference classifications are presented in three assistive tasks: feeding, shoe fitting and coat dressing.Peer ReviewedPostprint (author's final draft

    Deep Haptic Model Predictive Control for Robot-Assisted Dressing

    Full text link
    Robot-assisted dressing offers an opportunity to benefit the lives of many people with disabilities, such as some older adults. However, robots currently lack common sense about the physical implications of their actions on people. The physical implications of dressing are complicated by non-rigid garments, which can result in a robot indirectly applying high forces to a person's body. We present a deep recurrent model that, when given a proposed action by the robot, predicts the forces a garment will apply to a person's body. We also show that a robot can provide better dressing assistance by using this model with model predictive control. The predictions made by our model only use haptic and kinematic observations from the robot's end effector, which are readily attainable. Collecting training data from real world physical human-robot interaction can be time consuming, costly, and put people at risk. Instead, we train our predictive model using data collected in an entirely self-supervised fashion from a physics-based simulation. We evaluated our approach with a PR2 robot that attempted to pull a hospital gown onto the arms of 10 human participants. With a 0.2s prediction horizon, our controller succeeded at high rates and lowered applied force while navigating the garment around a persons fist and elbow without getting caught. Shorter prediction horizons resulted in significantly reduced performance with the sleeve catching on the participants' fists and elbows, demonstrating the value of our model's predictions. These behaviors of mitigating catches emerged from our deep predictive model and the controller objective function, which primarily penalizes high forces.Comment: 8 pages, 12 figures, 1 table, 2018 IEEE International Conference on Robotics and Automation (ICRA

    Data-driven robotic manipulation of cloth-like deformable objects : the present, challenges and future prospects

    Get PDF
    Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics community. CDOs are flexible (non-rigid) objects that do not show a detectable level of compression strength while two points on the article are pushed towards each other and include objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of freedom (DoF) introduce severe self-occlusion and complex state–action dynamics as significant obstacles to perception and manipulation systems. These challenges exacerbate existing issues of modern robotic control methods such as imitation learning (IL) and reinforcement learning (RL). This review focuses on the application details of data-driven control methods on four major task families in this domain: cloth shaping, knot tying/untying, dressing and bag manipulation. Furthermore, we identify specific inductive biases in these four domains that present challenges for more general IL and RL algorithms.Publisher PDFPeer reviewe

    A quantitative analysis of dressing dynamics for robotic dressing assistance

    Get PDF
    © 2017 Chance, Jevtić, Caleb-Solly and Dogramadzi. Assistive robots have a great potential to address issues related to an aging population and an increased demand for caregiving. Successful deployment of robots working in close proximity with people requires consideration of both safety and human-robot interaction (HRI). One of the established activities of daily living where robots could play an assistive role is dressing. Using the correct force profile for robot control will be essential in this application of HRI requiring careful exploration of factors related to the user's pose and the type of garments involved. In this paper, a Baxter robot was used to dress a jacket onto a mannequin and human participants considering several combinations of user pose and clothing type (base layers), while recording dynamic data from the robot, a load cell, and an IMU. We also report on suitability of these sensors for identifying dressing errors, e.g., fabric snagging. Data were analyzed by comparing the overlap of confidence intervals to determine sensitivity to dressing. We expand the analysis to include classification techniques such as decision tree and support vector machines using k-fold cross-validation. The 6-axis load cell successfully discriminated between clothing types with predictive model accuracies between 72 and 97%. Used independently, the IMU and Baxter sensors were insufficient to discriminate garment types with the IMU showing 40-72% accuracy, but when used in combination this pair of sensors achieved an accuracy similar to the more expensive load cell (98%). When observing dressing errors (snagging), Baxter's sensors and the IMU data demonstrated poor sensitivity but applying machine learning methods resulted in model with high predicative accuracy and low false negative rates (≤5%). The results show that the load cell could be used independently for this application with good accuracy but a combination of the lower cost sensors could also be used without a significant loss in precision, which will be a key element in the robot control architecture for safe HRI

    Safety assessment review of a dressing assistance robot

    Get PDF
    Hazard analysis methods such as HAZOP and STPA have proven to be effective methods for assurance of system safety for years. However, the dimensionality and human factors uncertainty of many assistive robotic applications challenges the capability of these methods to provide comprehensive coverage of safety issues from interdisciplinary perspectives in a timely and cost-effective manner. Physically assistive tasks in which a range of dynamic contexts require continuous human–robot physical interaction such as e.g., robot-assisted dressing or sit-to-stand pose a new paradigm for safe design and safety analysis methodology. For these types of tasks, considerations have to be made for a range of dynamic contexts where the robot-assistance requires close and continuous physical contact with users. Current regulations mainly cover industrial collaborative robotics regarding physical human–robot interaction (pHRI) but largely neglects direct and continuous physical human contact. In this paper, we explore limitations of commonly used safety analysis techniques when applied to robot-assisted dressing scenarios. We provide a detailed analysis of the system requirements from the user perspective and consider user-bounded hazards that can compromise safety of this complex pHRI
    • …
    corecore