1,022 research outputs found

    An assessment of the precise products on static Precise Point Positioning using Multi-Constellation GNSS

    Get PDF
    Precise point positioning (PPP) is highly dependent on the precise ephemerides and satellite clock products that are used. Different ephemeris and clock products are available from a variety of different organizations. The aim of this paper is to assess the achievable static positioning accuracy and precision when using different precise ephemerides from three analysis centres Natural Resources Canada (EMX), European Space Agency (ESA) and GeoForschungsZentrum (GFZ), using GPS alone, GLONASS alone, and GPS and GLONASS combined. It will be shown in this paper that the precise products are significantly affected by the time-base of the reference stations, and that this is propagated through to all the estimated satellite clocks. In order to overcome the combined biases in the estimated satellite clock, in the PPP processing, these clocks errors need to be handled with an appropriate variation in the estimated receiver clock. It will also be shown that the precise coordinates of the satellites differ between the analysis centres, and this affects the PPP position estimation at the millimetre level. However, all those products will be shown to result in the same level of precision for all coordinate components and are equivalent to the horizontal precision from a Global Double Difference (GDD) solution. For the horizontal coordinate component, the level of agreement between the PPP solutions, and with the GDD solution, is at the millimetre level. There is a notable, but small, bias in the north coordinate components of the PPP solutions, from the corresponding north component of the GDD solutions. It is shown that this difference is due to the different strategy adopted for the GDD and PPP solutions, with PPP being more affected by the changing satellite systems. The precision of the heights of the receiver sites will be shown to be almost the same across all the PPP scenarios, with all three products. Finally, it will be concluded that accuracy of the height component is system dependent and is related to the behaviour of antenna phase centre with the different constellation type

    Performance Assessment of PPP Surveys with Open Source Software Using the GNSS GPS\u2013GLONASS\u2013Galileo Constellations

    Get PDF
    In this work, the performance of the multi-GNSS (Global Navigation Satellite System) Precise Point Positioning (PPP) technique, in static mode, is analyzed. Specifically, GPS (Global Positioning System), GLONASS, and Galileo systems are considered, and quantifying the Galileo contribution is one of the main objectives. The open source software RTKLib is adopted to process the data, with precise satellite orbits and clocks from CNES (Centre National d\u2019Etudes Spatiales) and CLS (Collecte Localisation Satellites) analysis centers for International GNSS Service (IGS). The Iono-free model is used to correct ionospheric errors, the GOT-4.7 model is used to correct tidal effects, and Differential Code Biases (DCB) are taken from the Deutsche Forschungsanstalt f\ufcr Luftund Raumfahrt (DLR) center. Two different tropospheric models are tested: Saastamoinen and Estimate ZTD (Zenith Troposhperic Delay). For the proposed study, a dataset of 31 days from a permanent GNSS station, placed in Palermo (Italy), and a dataset of 10 days from a static geodetic receiver, placed nearby the station, have been collected and processed by the most used open source software in the geomatic community. The considered GNSS configurations are seven: GPS only, GLONASS only, Galileo only, GPS+GLONASS, GPS+Galileo, GLONASS+Galileo, and GPS+GLONASS+Galileo. The results show significant performance improvement of the GNSS combinations with respect to single GNSS cases

    Performance assessment of PPP surveys with open source software using the GNSS GPS-GLONASS-Galileo constellations

    Get PDF
    In this work, the performance of the multi-GNSS (Global Navigation Satellite System) Precise Point Positioning (PPP) technique, in static mode, is analyzed. Specifically, GPS (Global Positioning System), GLONASS, and Galileo systems are considered, and quantifying the Galileo contribution is one of the main objectives. The open source software RTKLib is adopted to process the data, with precise satellite orbits and clocks from CNES (Centre National d'Etudes Spatiales) and CLS (Collecte Localisation Satellites) analysis centers for International GNSS Service (IGS). The Iono-free model is used to correct ionospheric errors, the GOT-4.7 model is used to correct tidal effects, and Differential Code Biases (DCB) are taken from the Deutsche Forschungsanstalt für Luftund Raumfahrt (DLR) center. Two different tropospheric models are tested: Saastamoinen and Estimate ZTD (Zenith Troposhperic Delay). For the proposed study, a dataset of 31 days from a permanent GNSS station, placed in Palermo (Italy), and a dataset of 10 days from a static geodetic receiver, placed nearby the station, have been collected and processed by the most used open source software in the geomatic community. The considered GNSS configurations are seven: GPS only, GLONASS only, Galileo only, GPS+GLONASS, GPS+Galileo, GLONASS+Galileo, and GPS+GLONASS+Galileo. The results show significant performance improvement of the GNSS combinations with respect to single GNSS cases

    Precise Point Positioning Augmentation for Various Grades of Global Navigation Satellite System Hardware

    Get PDF
    The next generation of low-cost, dual-frequency, multi-constellation GNSS receivers, boards, chips and antennas are now quickly entering the market, offering to disrupt portions of the precise GNSS positioning industry with much lower cost hardware and promising to provide precise positioning to a wide range of consumers. The presented work provides a timely, novel and thorough investigation into the positioning performance promise. A systematic and rigorous set of experiments has been carried-out, collecting measurements from a wide array of low-cost, dual-frequency, multi-constellation GNSS boards, chips and antennas introduced in late 2018 and early 2019. These sensors range from dual-frequency, multi-constellation chips in smartphones to stand-alone chips and boards. In order to be comprehensive and realistic, these experiments were conducted in a number of static and kinematic benign, typical, suburban and urban environments. In terms of processing raw measurements from these sensors, the Precise Point Positioning (PPP) GNSS measurement processing mode was used. PPP has become the defacto GNSS positioning and navigation technique for scientific and engineering applications that require dm- to cm-level positioning in remote areas with few obstructions and provides for very efficient worldwide, wide-array augmentation corrections. To enhance solution accuracy, novel contributions were made through atmospheric constraints and the use of dual- and triple-frequency measurements to significantly reduce PPP convergence period. Applying PPP correction augmentations to smartphones and recently released low-cost equipment, novel analyses were made with significantly improved solution accuracy. Significant customization to the York-PPP GNSS measurement processing engine was necessary, especially in the quality control and residual analysis functions, in order to successfully process these datasets. Results for new smartphone sensors show positioning performance is typically at the few dm-level with a convergence period of approximately 40 minutes, which is 1 to 2 orders of magnitude better than standard point positioning. The GNSS chips and boards combined with higher-quality antennas produce positioning performance approaching geodetic quality. Under ideal conditions, carrier-phase ambiguities are resolvable. The results presented show a novel perspective and are very promising for the use of PPP (as well as RTK) in next-generation GNSS sensors for various application in smartphones, autonomous vehicles, Internet of things (IoT), etc

    An assessment of static Precise Point Positioning using GPS only, GLONASS only, and GPS plus GLONASS

    Get PDF
    The aim of this paper is to look into the achievable repeatability and accuracy from Precise Point Positioning (PPP) daily solutions when using GPS only (PPP GPS), GLONASS only (PPP GLO), and GPS plus GLONASS (PPP GPS+GLO) for static positioning. As part of the assessment, a comparison with global double difference (DD) GPS daily solutions is presented. It is shown, therefore, that all of the PPP daily solutions can achieve millimetric level repeatability, similar to the global DD GPS solutions. Furthermore, the mean of the biases between the PPP daily solutions and the global DD GPS daily solutions are constellation type dependent, while an improvement is found in the vertical component for PPP GPS+GLO over PPP GLO, as the latter may be more affected by any imperfections in the models for GLONASS antenna phase centre variations. It is concluded that PPP GLO daily solutions have the ability to be used as independent solutions to PPP GPS daily solutions for static positioning, and as an alternative to PPP GPS+GLO or global DD GPS daily solutions

    Inter-system biases solution strategies in multi-GNSS kinematic precise point positioning

    Get PDF
    Estimating inter-system biases (ISBs) is important in multi-constellation Global Navigation Satellite System (GNSS) processing. The present study aims to evaluate and screen out an optimal estimation strategy of ISB for multi-GNSS kinematic precise point positioning (PPP). The candidate strategies considered for ISB estimation are white noise process (ISB-WN), random walk process (ISB-RW), constant (ISB-CT) and eliminated by between-satellite single-differenced observations (ISB-SD). We first present the mathematical model of ISB derived from the observation combination among different GNSSs, and we demonstrate the equivalence between ISB-WN and ISB-SD in the Kalman filter. In order to evaluate the performance of these four ISB solution strategies, we implement kinematic PPP with 1-month static data from 112 International GNSS service stations and two-hour dynamic vehicular data collected in an urban case. For comparison, precise orbit and clock products from the Center for Orbit Determination in Europe (CODE), GeoForschungsZentrum in Germany (GFZ) and Wuhan University (WHU) are employed in our experiments. The results of static tests show that the positioning accuracy is comparable among the four strategies, but ISB-CT performs slightly better in convergence time. In the kinematic test, there are more cycle slips than static test, and the ISB-CT improves the positioning accuracy by 15.7%, 38.9% and 63.2% in east, north and up components, and reduces the convergence time by 60.1% comparing with the other strategies. Moreover, both the static and kinematic tests prove the consistence among CODE, GFZ and WHU precise products and the equivalence between ISB-WN and ISB-SD strategies. Finally, more, i.e., the same amount of cycle slips as for the dynamic data, are artificially added to the static data to conduct the pseudo-kinematic test. The result shows that ISB-CT improves the positioning accuracy and convergence time by 19.2% and 24.4%, respectively.The study is funded by Laoshan Laboratory (LSKJ202205104, LSKJ202205104_01), National Key Research and Development Program of China (2020YFB0505800, 2020YFB0505804), National Natural Science Foundation of China (42004012), Natural Science Foundation of Shandong Province, China (ZR2020QD048) and by the project RTI2018-094295-B-I00 funded by the MCIN/AEI 1013039/501100011033 which is co-funded by the FEDER program.Peer ReviewedPostprint (published version

    Cost-Effective GNSS Hardware for High-Accuracy Surveys and Its Prospects for Post-Processed Kinematic (PPK) and Precise Point Positioning (PPP) Strategies

    Get PDF
    This dissertation determines for the first time the vertical accuracy achievable with low-cost mass-market multi-frequency, multi-GNSS (LM3GNSS) receivers, and antennas in the context of Ellipsoid Reference Survey (ERS), usually employed in bathymetric operations aboard survey platforms. LM3GNSS receivers are relatively new in the market, and their emergence is driven by the automobile industry and several mass-market applications requiring location-based solutions at high accuracies. It is foreseeable that emerging hydrographic survey platforms such as autonomous surface vehicles, small unmanned aircraft, crowd-sourced bathymetric platforms, and offshore GNSS buoy will find LM3GNSS receivers attractive since they are power- and cost-effective (often less than $1,000 per unit). Previous studies have shown that some mass-market GNSS receivers\u27 positioning accuracy is at the sub-meter level in some positioning strategies, but the authors rarely discussed the vertical accuracy. In rare cases where attention is given to the vertical component, the experiment design did not address the dynamic antenna scenario typical of hydrographic survey operations and the positioning performance that meets the hydrographic survey community\u27s aspirations. The LM3GNSS receivers and low-cost antennas considered in this dissertation achieved vertical accuracies within 0.15 m at a 95% confidence level in simulated precise point positioning (PPP) and post-processed kinematic positioning strategies. This dissertation characterizes the signal strength, multipath, carrier-phase residuals, and code residuals in the measurement quality assessment of four LM3GNSS receivers and four low-cost antennas. The dissertation investigates the performances of the LM3GNSS receivers and low-cost antennas in different antenna-receiver pairings, relative to a high-grade GNSS receiver and antenna in simulated-kinematic and precise point positioning (PPP) strategies. This dissertation also shows that solutions with an uncalibrated antenna improve with a cloned ANTEX file making the results comparable to those achieved with high-end GNSS antenna. This dissertation also describes a GNSS processing tool (with graphic user interface), developed from scratch by the author, that implements, among others, orbit interpolation and geodetic computations as steps towards multipath computation and analysis. The dissertation concludes as follows: (1) The LM3GNSS hardware considered in this dissertation provides effective alternative positioning and navigation performance for emerging survey platforms such as ASV and sUAS. (2) LM3GNSS hardware can meet vertical positioning accuracy on the order of 0.15 m at a 95% confidence level in PPP strategy on less dynamic platforms. (3) LM3GNSS receivers can provide PPK solutions at medium (30 – 40 km) baselines with a vertical positioning accuracy better than 0.15m at a 95% confidence level. (4) LM3GNSS receivers in PPP strategy should meet IHO S-44 order-1 and order-2 in shallow waters. (5) Zephyr3 antenna, being a high-end GNSS antenna, may not always offer the best performance with the LM3GNSS receiver, especially in a dynamic environment. (6) Given the current tracking capabilities, the measurement quality, and positioning performances of LM3GNSS receivers relative to the geodetic grade receiver, it is foreseeable that the distinction between high-end GNSS and LM3GNSS receivers will most likely fade away as GNSS hardware technology advances. (7) Maximizing an LM3GNSS receiver in PPK strategy requires a multi-constellation-enabled reference station and high (i.e., 1 Hz) data tracking rate; otherwise, the PPK solutions will likely drift up to 20 cm

    Helmert Variance Component Estimation for Multi-GNSS Relative Positioning

    Get PDF
    The Multi-constellation Global Navigation Satellite System (Multi-GNSS) has become the standard implementation of high accuracy positioning and navigation applications. It is well known that the noise of code and phase measurements depend on GNSS constellation. Then, Helmert variance component estimation (HVCE) is usually used to adjust the contributions of di¿erent GNSS constellations by determining their individual variances of unit weight. However, HVCE requires a heavy computation load. In this study, the HVCE posterior weighting was employed to carry out a kinematic relative Multi-GNSS positioning experiment with six short-baselines from day of year (DoY) 171 to 200 in 2019. As a result, the HVCE posterior weighting strategy improved Multi-GNSS positioning accuracy by 20.5%, 15.7% and 13.2% ineast-north-up(ENU) components, compared to an elevation-dependent (ED) priori weighting strategy. We observed that the weight proportion of both code and phase observations for each GNSS constellation were consistent during the entire 30 days, which indicates that the weight proportions of both code and phase observations are stable over a long period of time. It was also found that the quality of a phase observation is almost equivalent in each baseline and GNSS constellation, whereas that of a code observation is different. In order to reduce the time consumption off the HVCE method without sacrificing positioning accuracy, the stable variances of unit weights of both phase and code observations obtained over 30 days were averaged and then frozen as a priori information in the positioning experiment. The result demonstrated similar ENU improvements of 20.0%, 14.1% and 11.1% with respect to the ED method but saving 88% of the computation time of the HCVE strategy. Our study concludes with the observations that the frozen variances of unit weight (FVUW) could be applied to the positioning experiment for the next 30 days, that is, from DoY 201 to 230 in 2019, improving the positioning ENU accuracy of the ED method by 18.1%, 13.2% and 10.6%, indicating the effectiveness of the FVUW.Peer ReviewedPostprint (published version

    Multi-Frequency Precise Point Positioning using GPS and Galileo data with smoothed ionospheric corrections

    Get PDF
    The poor signal visibility and continuity associated with urban environments together with the slow convergence/reconvergence time of Precise Point Positioning (PPP), usually makes PPP unsuitable for land navigation in cities. However, results based on simulated open areas demonstrated that, once Galileo reaches final operational capability, PPP convergence time will be cut in a half using dual-constellation GPS/Galileo observations. Therefore, it might be possible to extend the applicability of PPP to land navigation in certain urban areas. Preliminary results, based on simulations, showed that GPS/Galileo PPP is possible where buildings are relatively short and satellites minimum visibility requirement is met for most of the time. In urban environments, signal discontinuity and reconvergence still represent the major problem for traditional PPP, which is based on the ionosphere-free combination of two-frequency pseudo-range and carrier phase. An alternative method to mitigate the ionosphere delay is proposed in order to ensure the best positioning performance from multi-frequency PPP. Instead of using the ionosphere-free combination, here low noise dual- or triple-frequency pseudo-range combinations are corrected with ionosphere delay information coming from federated carrier smoothing (Hatch) iono-estimation filters for each satellite. This method provides faster re- convergence time and ensures the best possible positioning performance from the Galileo Alternative BOC modulation in multi-frequency PPP. Indeed, even though Galileo E5 has small tracking noise and excellent multipath rejection, its PPP positioning performance is limited by the influence of E1 signal errors in the ionosphere-free combination, degrading the quality of the measurements
    • …
    corecore