1,112 research outputs found

    Scheduling Algorithms: Challenges Towards Smart Manufacturing

    Get PDF
    Collecting, processing, analyzing, and driving knowledge from large-scale real-time data is now realized with the emergence of Artificial Intelligence (AI) and Deep Learning (DL). The breakthrough of Industry 4.0 lays a foundation for intelligent manufacturing. However, implementation challenges of scheduling algorithms in the context of smart manufacturing are not yet comprehensively studied. The purpose of this study is to show the scheduling No.s that need to be considered in the smart manufacturing paradigm. To attain this objective, the literature review is conducted in five stages using publish or perish tools from different sources such as Scopus, Pubmed, Crossref, and Google Scholar. As a result, the first contribution of this study is a critical analysis of existing production scheduling algorithms\u27 characteristics and limitations from the viewpoint of smart manufacturing. The other contribution is to suggest the best strategies for selecting scheduling algorithms in a real-world scenario

    Background, Systematic Review, Challenges and Outlook

    Get PDF
    Publisher Copyright: © 2013 IEEE. This research is supported by the Digital Manufacturing and Design Training Network (DiManD) project funded by the European Union through the Marie Skłodowska-Curie Innovative Training Networks (H2020-MSCA-ITN-2018) under grant agreement no. 814078The concept of smart manufacturing has attracted huge attention in the last years as an answer to the increasing complexity, heterogeneity, and dynamism of manufacturing ecosystems. This vision embraces the notion of autonomous and self-organized elements, capable of self-management and self-decision-making under a context-aware and intelligent infrastructure. While dealing with dynamic and uncertain environments, these solutions are also contributing to generating social impact and introducing sustainability into the industrial equation thanks to the development of task-specific resources that can be easily adapted, re-used, and shared. A lot of research under the context of self-organization in smart manufacturing has been produced in the last decade considering different methodologies and developed under different contexts. Most of these works are still in the conceptual or experimental stage and have been developed under different application scenarios. Thus, it is necessary to evaluate their design principles and potentiate their results. The objective of this paper is threefold. First, to introduce the main ideas behind self-organization in smart manufacturing. Then, through a systematic literature review, describe the current status in terms of technological and implementation details, mechanisms used, and some of the potential future research directions. Finally, the presentation of an outlook that summarizes the main results of this work and their interrelation to facilitate the development of self-organized manufacturing solutions. By providing a holistic overview of the field, we expect that this work can be used by academics and practitioners as a guide to generate awareness of possible requirements, industrial challenges, and opportunities that future self-organizing solutions can have towards a smart manufacturing transition.publishersversionpublishe

    Assembly sequence planning using hybrid binary particle swarm optimization

    Get PDF
    Assembly Sequence Planning (ASP) is known as a large-scale, timeconsuming combinatorial problem. Therefore time is the main factor in production planning. Recently, ASP in production planning had been studied widely especially to minimize the time and consequently reduce the cost. The first objective of this research is to formulate and analyse a mathematical model of the ASP problem. The second objective is to minimize the time of the ASP problem and hence reduce the product cost. A case study of a product consists of 19 components have been used in this research, and the fitness function of the problem had been calculated using Binary Particle Swarm Optimization (BPSO), and hybrid algorithm of BPSO and Differential Evolution (DE). The novel algorithm of BPSODE has been assessed with performance-evaluated criteria (performance measure). The algorithm has been validated using 8 comprehensive benchmark problems from the literature. The results show that the BPSO algorithm has an improved performance and can reduce further the time of assembly of the 19 parts of the ASP compared to the Simulated Annealing and Genetic Algorithm. The novel hybrid BPSODE algorithm shows a superior performance when assessed via performance-evaluated criteria compared to BPSO. The BPSODE algorithm also demonstrated a good generation of the recorded optimal value for the 8 standard benchmark problems

    Hybrid Monte Carlo tree search based multi-objective scheduling

    Get PDF
    As markets demand targeted products for highly differentiated use cases, the number of variants in production increases, whilst the volume per variant decreases. Different product variants result in differences in work content on workstation level which cause takt time losses and result in a poor utilization. In this context, matrix-structured production systems with neither temporal nor spacial linkage emerged to reduce the effects of different work content on the entire production system. However, matrix-structured production systems require far more complex production control. To that end, this paper presents a scheduling approach. The proposed scheduling system considers variable process sequences and their allocation to different workstations in order to optimize scheduling objectives. This contribution presents a Monte Carlo tree search based optimizer combined with local search as post optimizer to derive schedules in a short time span to enabling reactive scheduling. The application of the scheduler to a benchmark problem and an industrial scheduling problem demonstrates the quality of the results and illustrates how the scheduler reassigns the work content dynamically

    Artificial Intelligence as an Enabler of Quick and Effective Production Repurposing Manufactur-ing: An Exploratory Review and Future Research Propositions

    Get PDF
    The outbreak of Covid-19 created disruptions in manufacturing operations. One of the most serious negative impacts is the shortage of critical medical supplies. Manufacturing firms faced pressure from governments to use their manufacturing capacity to repurpose their production for meeting the critical demand for necessary products. For this purpose, recent advancements in technology and artificial intelligence (AI) could act as response solutions to conquer the threats linked with repurposing manufacturing (RM). The study’s purpose is to investigate the significance of AI in RM through a systematic literature review (SLR). This study gathered around 453 articles from the SCOPUS database in the selected research field. Structural Topic Modeling (STM) was utilized to generate emerging research themes from the selected documents on AI in RM. In addition, to study the research trends in the field of AI in RM, a bibliometric analysis was undertaken using the R-package. The findings of the study showed that there is a vast scope for research in this area as the yearly global production of articles in this field is limited. However, it is an evolving field and many research collaborations were identified. The study proposes a comprehensive research framework and propositions for future research development

    Facility Layout Planning and Job Shop Scheduling – A survey

    Get PDF

    The problem of uninterrupted hybrid flow shop scheduling with regard to the fuzzy processing time

    Get PDF
    Purpose: In this paper, an uninterrupted hybrid flow shop scheduling problem is modeled under uncertainty conditions. Due to the uncertainty of processing time in workshops, which is due to delays in receiving raw materials or machine failure, fuzzy programming method has been used to control the processing time parameter. In the proposed model, there are several jobs that must be processed by machines in sequence. The main purpose of the proposed model is to determine the correct sequence of operations and assign operations to each machine at each stage, so that the total completion time (Cmax) is minimized. Methodology: In this paper, the fuzzy programming method is used to control the uncertain parameter. Also, The GAMS software and CPLEX solver have also been used to solve the sample problems. Findings: The results of solving the problem in small and medium size show that with increasing the rate of uncertainty, the amount of processing time increases and therefore the completion time of the whole work increases. On the other hand, with the increase in the number of machines in each stage due to the high efficiency of the machines, the completion time of all works has decreased. Originality/Value: The most important innovation of this article is the design of uninterrupted hybrid flow shop scheduling with regard to the fuzzy processing time

    Bi-level dynamic scheduling architecture based on service unit digital twin agents

    Get PDF
    Pure reactive scheduling is one of the core technologies to solve the complex dynamic disturbance factors in real-time. The emergence of CPS, digital twin, cloud computing, big data and other new technologies based on the industrial Internet enables information acquisition and pure reactive scheduling more practical to some extent. However, how to build a new architecture to solve the problems which traditional dynamic scheduling methods cannot solve becomes a new research challenge. Therefore, this paper designs a new bi-level distributed dynamic workshop scheduling architecture, which is based on the workshop digital twin scheduling agent and multiple service unit digital twin scheduling agents. Within this architecture, scheduling a physical workshop is decomposed to the whole workshop scheduling in the first level and its service unit scheduling in the second level. On the first level, the whole workshop scheduling is executed by its virtual workshop coordination (scheduling) agent embedded with the workshop digital twin consisting of multi-service unit digital twins. On the second level, each service unit scheduling coordinated by the first level scheduling is executed in a distributed way by the corresponding service unit scheduling agent associated with its service unit digital twin. The benefits of the new architecture include (1) if a dynamic scheduling only requires a single service unit scheduling, it will then be performed in the corresponding service unit scheduling without involving other service units, which will make the scheduling locally, simply and robustly. (2) when a dynamic scheduling requires changes in multiple service units in a coordinated way, the first level scheduling will be executed and then coordinate the second level service unit scheduling accordingly. This divide-and-then-conquer strategy will make the scheduling easier and practical. The proposed architecture has been tested to illustrate its feasibility and practicality

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included
    corecore