31,841 research outputs found

    Optimization of FPGA Based Neural Network Processor

    Get PDF
    Neural information processing is an emerging new field, providing an alternative form of computation for demanding tasks such as pattern recognition problems which are usually reserved for human attention. Neural network computation i s sought after where classification of input data is difficult to be worked out using equations or sets of rules. Technological advances in integrated circuits such as Field Programmable Gate Array (FPGA) systems have made it easier to develop and implement hardware devices based on these neural network architectures. The motivation in hardware implementation of neural networks is its fast processing speed and suitability in parallel and pipelined processing. The project revolves around the design of an optimized neural network processor. The processor design is based on the feedforward network architecture type with BackPropagation trained weights for the Exclusive-OR non-linear problem. Among the highlights of the project is the improvement in neural network architecture through reconfigurable and recursive computation of a single hidden layer for multiple layer applications. Improvements in processor organization were also made which enables the design to parallel process with similar processors. Other improvements include design considerations to reduce the amount of logic required for implementation without much sacrifice of processing speed

    Report from the MPP Working Group to the NASA Associate Administrator for Space Science and Applications

    Get PDF
    NASA's Office of Space Science and Applications (OSSA) gave a select group of scientists the opportunity to test and implement their computational algorithms on the Massively Parallel Processor (MPP) located at Goddard Space Flight Center, beginning in late 1985. One year later, the Working Group presented its report, which addressed the following: algorithms, programming languages, architecture, programming environments, the way theory relates, and performance measured. The findings point to a number of demonstrated computational techniques for which the MPP architecture is ideally suited. For example, besides executing much faster on the MPP than on conventional computers, systolic VLSI simulation (where distances are short), lattice simulation, neural network simulation, and image problems were found to be easier to program on the MPP's architecture than on a CYBER 205 or even a VAX. The report also makes technical recommendations covering all aspects of MPP use, and recommendations concerning the future of the MPP and machines based on similar architectures, expansion of the Working Group, and study of the role of future parallel processors for space station, EOS, and the Great Observatories era

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Runtime Optimizations for Prediction with Tree-Based Models

    Full text link
    Tree-based models have proven to be an effective solution for web ranking as well as other problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, given an already-trained model. Although exceedingly simple conceptually, most implementations of tree-based models do not efficiently utilize modern superscalar processor architectures. By laying out data structures in memory in a more cache-conscious fashion, removing branches from the execution flow using a technique called predication, and micro-batching predictions using a technique called vectorization, we are able to better exploit modern processor architectures and significantly improve the speed of tree-based models over hard-coded if-else blocks. Our work contributes to the exploration of architecture-conscious runtime implementations of machine learning algorithms

    Optimization of FPGA Based Neural Network Processor

    Get PDF
    Neural information processing is an emerging new field, providing an alternative form of computation for demanding tasks such as pattern recognition problems which are usually reserved for human attention. Neural network computation i s sought after where classification of input data is difficult to be worked out using equations or sets of rules. Technological advances in integrated circuits such as Field Programmable Gate Array (FPGA) systems have made it easier to develop and implement hardware devices based on these neural network architectures. The motivation in hardware implementation of neural networks is its fast processing speed and suitability in parallel and pipelined processing. The project revolves around the design of an optimized neural network processor. The processor design is based on the feedforward network architecture type with BackPropagation trained weights for the Exclusive-OR non-linear problem. Among the highlights of the project is the improvement in neural network architecture through reconfigurable and recursive computation of a single hidden layer for multiple layer applications. Improvements in processor organization were also made which enables the design to parallel process with similar processors. Other improvements include design considerations to reduce the amount of logic required for implementation without much sacrifice of processing speed
    • …
    corecore