14,418 research outputs found

    Preliminary assessment of soil moisture over vegetation

    Get PDF
    Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments

    Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland

    Get PDF
    Evapotranspiration (ET) from the wetland of the Yellow River Delta (YRD) is one of the important components in the water cycle, which represents the water consumption by the plants and evaporation from the water and the non-vegetated surfaces. Reliable estimates of the total evapotranspiration from the wetland is useful information both for understanding the hydrological process and for water management to protect this natural environment. Due to the heterogeneity of the vegetation types and canopy density and of soil water content over the wetland (specifically over the natural reserve areas), it is difficult to estimate the regional evapotranspiration extrapolating measurements or calculations usually done locally for a specific land cover type. Remote sensing can provide observations of land surface conditions with high spatial and temporal resolution and coverage. In this study, a model based on the Energy Balance method was used to calculate daily evapotranspiration (ET) using instantaneous observations of land surface reflectance and temperature from MODIS when the data were available on clouds-free days. A time series analysis algorithm was then applied to generate a time series of daily ET over a year period by filling the gaps in the observation series due to clouds. A detailed vegetation classification map was used to help identifying areas of various wetland vegetation types in the YRD wetland. Such information was also used to improve the parameterizations in the energy balance model to improve the accuracy of ET estimates. This study showed that spatial variation of ET was significant over the same vegetation class at a given time and over different vegetation types in different seasons in the YRD wetlan

    Controlling evaporation loss from water storages

    Get PDF
    [Executive Summary]: Evaporation losses from on-farm storage can potentially be large, particularly in irrigation areas in northern New South Wales and Queensland where up to 40% of storage volume can be lost each year to evaporation. Reducing evaporation from a water storage would allow additional crop production, water trading or water for the environment. While theoretical research into evaporation from storages has previously been undertaken there has been little evaluation of current evaporation mitigation technologies (EMTs) on commercial sized water storages. This project was initiated by the Queensland Government Department of Natural Resources and Mines (NRM) with the express aim of addressing this gap in our knowledge. The report addressed i) assessment of the effectiveness of different EMT’s in reducing evaporation from commercial storages across a range of climate regions, ii) assessment of the practical and technical limitations of different evaporation control products, and iii) comparison of the economics of different EMT’s on water storages used for irrigation

    A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data

    Get PDF
    An overview of the commonly applied evapotranspiration (ET) models using remotely sensed data is given to provide insight into the estimation of ET on a regional scale from satellite data. Generally, these models vary greatly in inputs, main assumptions and accuracy of results, etc. Besides the generally used remotely sensed multi-spectral data from visible to thermal infrared bands, most remotely sensed ET models, from simplified equations models to the more complex physically based two-source energy balance models, must rely to a certain degree on ground-based auxiliary measurements in order to derive the turbulent heat fluxes on a regional scale. We discuss the main inputs, assumptions, theories, advantages and drawbacks of each model. Moreover, approaches to the extrapolation of instantaneous ET to the daily values are also briefly presented. In the final part, both associated problems and future trends regarding these remotely sensed ET models were analyzed to objectively show the limitations and promising aspects of the estimation of regional ET based on remotely sensed data and ground-based measurements

    Testing an Energy Balance Model for Estimating Actual Evapotranspiration Using Remotely Sensed Data

    Get PDF
    An energy-balance model is used to estimate daily evapotranspiration for 3 days for a barley field and a wheat field near Hannover, Federal Republic of Germany. The model was calibrated using once-daily estimates of surface temperatures, which may be remotely sensed. The evaporation estimates were within the 95% error bounds of independent eddy correlation estimates for the daytime periods for all three days for both sites, but the energy-balance estimates are generally higher; it is unclear which estimate is biassed. Soil moisture in the top 2 cm of soil, which may be remotely sensed, may be used to improve these evaporation estimates under partial ground cover. Sensitivity studies indicate the amount of ground data required is not excessive

    Sources of variation in multi-decadal water fluxes inferred from weather station data

    Full text link
    Terrestrial evapotranspiration (ET) is a significant component of the energy and water balances at the land surface. However, direct, continuous measurements of ET are spatially limited and only available since the 1990s. Due to this lack of observations, detecting and attributing long-term regional trends in ET remains difficult. This dissertation aims to alleviate the data limitation and detect long-term trends by developing a method to infer ET from data collected at common weather stations, which are spatially and temporally abundant. The methodology used to infer ET from historical meteorological data is based on an emergent relation between the land surface and atmospheric boundary layer. We refer to this methodology as the Evapotranspiration from Relative Humidity at Equilibrium method, or the “ETRHEQ method”. In the first section of this dissertation, we develop the ETRHEQ method for use at common weather stations and demonstrate the utility of the method at twenty eddy covariance sites spanning a wide range of climate and plant functional types. Next, we apply the ETRHEQ method at historical weather stations across the continental U.S. and show that ET estimates obtained via the ETRHEQ method compare well with watershed scale ET, as well as ET estimates from land surface models. From 1961 to 1997, we find negligible or increasing trends in summertime ET over the central U.S. and the west coast and negative trends in the eastern and western U.S. From 1998 to 2014, we find a sharp decline in summertime ET across the entire U.S. We show that this decline is consistent with decreasing transpiration associated with declines in humidity. Lastly, we assess the sensitivity of ET to perturbations in soil moisture and humidity anticipated with climate change. We demonstrate that the response of ET to changing humidity and soil moisture is strongly dependent on the biological and hydrological state of the surface, particularly the degree of water stress and vegetation fraction. In total, this dissertation demonstrates the utility of the ETRHEQ method as a means to estimate ET from weather station data and highlights the critical role of vegetation in modulating ET variability

    A review of the meteorological parameters which affect aerial application

    Get PDF
    The ambient wind field and temperature gradient were found to be the most important parameters. Investigation results indicated that the majority of meteorological parameters affecting dispersion were interdependent and the exact mechanism by which these factors influence the particle dispersion was largely unknown. The types and approximately ranges of instrumented capabilities for a systematic study of the significant meteorological parameters influencing aerial applications were defined. Current mathematical dispersion models were also briefly reviewed. Unfortunately, a rigorous dispersion model which could be applied to aerial application was not available

    Soil Moisture Workshop

    Get PDF
    The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report
    corecore