2,836 research outputs found

    Translating computational modelling tools for clinical practice in congenital heart disease

    Get PDF
    Increasingly large numbers of medical centres worldwide are equipped with the means to acquire 3D images of patients by utilising magnetic resonance (MR) or computed tomography (CT) scanners. The interpretation of patient 3D image data has significant implications on clinical decision-making and treatment planning. In their raw form, MR and CT images have become critical in routine practice. However, in congenital heart disease (CHD), lesions are often anatomically and physiologically complex. In many cases, 3D imaging alone can fail to provide conclusive information for the clinical team. In the past 20-30 years, several image-derived modelling applications have shown major advancements. Tools such as computational fluid dynamics (CFD) and virtual reality (VR) have successfully demonstrated valuable uses in the management of CHD. However, due to current software limitations, these applications have remained largely isolated to research settings, and have yet to become part of clinical practice. The overall aim of this project was to explore new routes for making conventional computational modelling software more accessible for CHD clinics. The first objective was to create an automatic and fast pipeline for performing vascular CFD simulations. By leveraging machine learning, a solution was built using synthetically generated aortic anatomies, and was seen to be able to predict 3D aortic pressure and velocity flow fields with comparable accuracy to conventional CFD. The second objective was to design a virtual reality (VR) application tailored for supporting the surgical planning and teaching of CHD. The solution was a Unity-based application which included numerous specialised tools, such as mesh-editing features and online networking for group learning. Overall, the outcomes of this ongoing project showed strong indications that the integration of VR and CFD into clinical settings is possible, and has potential for extending 3D imaging and supporting the diagnosis, management and teaching of CHD

    GSGS'18 ::3rd Gamification & Serious Game Symposium : health and silver technologies, architecture and urbanism, economy and ecology, education and training, social and politics

    Get PDF
    The GSGS’18 conference is at the interface between industrial needs and original answers by highlighting the playful perspective to tackle technical, training, ecological, management and communication challenges. Bringing together the strengths of our country, this event provides a solid bridge between academia and industry through the intervention of more than 40 national and international actors. In parallel with the 53 presentations and demos, the public will be invited to participate actively through places of exchange and round tables

    Simulating Developmental Cardiac Morphology in Virtual Reality Using a Deformable Image Registration Approach

    Get PDF
    While virtual reality (VR) has potential in enhancing cardiovascular diagnosis and treatment, prerequisite labor-intensive image segmentation remains an obstacle for seamlessly simulating 4-dimensional (4-D, 3-D + time) imaging data in an immersive, physiological VR environment. We applied deformable image registration (DIR) in conjunction with 3-D reconstruction and VR implementation to recapitulate developmental cardiac contractile function from light-sheet fluorescence microscopy (LSFM). This method addressed inconsistencies that would arise from independent segmentations of time-dependent data, thereby enabling the creation of a VR environment that fluently simulates cardiac morphological changes. By analyzing myocardial deformation at high spatiotemporal resolution, we interfaced quantitative computations with 4-D VR. We demonstrated that our LSFM-captured images, followed by DIR, yielded average dice similarity coefficients of 0.92 ± 0.05 (n = 510) and 0.93 ± 0.06 (n = 240) when compared to ground truth images obtained from Otsu thresholding and manual segmentation, respectively. The resulting VR environment simulates a wide-angle zoomed-in view of motion in live embryonic zebrafish hearts, in which the cardiac chambers are undergoing structural deformation throughout the cardiac cycle. Thus, this technique allows for an interactive micro-scale VR visualization of developmental cardiac morphology to enable high resolution simulation for both basic and clinical science

    Interactive Training System for Interventional Electrocardiology Procedures

    Get PDF
    International audienceRecent progress in cardiac catheterization and devices al-lowed to develop new therapies for severe cardiac diseases like arrhyth-mias and heart failure. The skills required for such interventions are still very challenging to learn, and typically acquired over several years. Vir-tual reality simulators can reduce this burden by allowing to practice such procedures without consequences on patients. In this paper, we propose the first training system dedicated to cardiac electrophysiology, includ-ing pacing and ablation procedures. Our framework involves an efficient GPU-based electrophysiological model. Thanks to an innovative mul-tithreading approach, we reach high computational performances that allow to account for user interactions in real-time. Based on a scenario of cardiac arrhythmia, we demonstrate the ability of the user-guided simulator to navigate inside vessels and cardiac cavities with a catheter and to reproduce an ablation procedure involving: extra-cellular poten-tial measurements, endocardial surface reconstruction, electrophysiology mapping, radio-frequency (RF) ablation, as well as electrical stimulation. This works is a step towards computerized medical learning curriculum

    Design and Development of an Immersive Virtual Reality Team Trainer for Advance Cardiac Life Support

    Get PDF
    abstract: Technology in the modern day has ensured that learning of skills and behavior may be both widely disseminated and cheaply available. An example of this is the concept of virtual reality (VR) training. Virtual Reality training ensures that learning can be provided often, in a safe simulated setting, and it may be delivered in a manner that makes it engaging while negating the need to purchase special equipment. This thesis presents a case study in the form of a time critical, team based medical scenario known as Advanced Cardiac Life Support (ACLS). A framework and methodology associated with the design of a VR trainer for ACLS is detailed. In addition, in order to potentially provide an engaging experience, the simulator was designed to incorporate immersive elements and a multimodal interface (haptic, visual, and auditory). A study was conducted to test two primary hypotheses namely: a meaningful transfer of skill is achieved from virtual reality training to real world mock codes and the presence of immersive components in virtual reality leads to an increase in the performance gained. The participant pool consisted of 54 clinicians divided into 9 teams of 6 members each. The teams were categorized into three treatment groups: immersive VR (3 teams), minimally immersive VR (3 teams), and control (3 teams). The study was conducted in 4 phases from a real world mock code pretest to assess baselines to a 30 minute VR training session culminating in a final mock code to assess the performance change from the baseline. The minimally immersive team was treated as control for the immersive components. The teams were graded, in both VR and mock code sessions, using the evaluation metric used in real world mock codes. The study revealed that the immersive VR groups saw greater performance gain from pretest to posttest than the minimally immersive and control groups in case of the VFib/VTach scenario (~20% to ~5%). Also the immersive VR groups had a greater performance gain than the minimally immersive groups from the first to the final session of VFib/VTach (29% to -13%) and PEA (27% to 15%).Dissertation/ThesisM.S. Computer Science 201

    Immersive Visualization for Enhanced Computational Fluid Dynamics Analysis

    Get PDF
    Modern biomedical computer simulations produce spatiotemporal results that are often viewed at a single point in time on standard 2D displays. An immersive visualization environment (IVE) with 3D stereoscopic capability can mitigate some shortcomings of 2D displays via improved depth cues and active movement to further appreciate the spatial localization of imaging data with temporal computational fluid dynamics (CFD) results. We present a semi-automatic workflow for the import, processing, rendering, and stereoscopic visualization of high resolution, patient-specific imaging data, and CFD results in an IVE. Versatility of the workflow is highlighted with current clinical sequelae known to be influenced by adverse hemodynamics to illustrate potential clinical utility

    Use of extended realities in cardiology

    Get PDF
    Recent miniaturization of electronic components and advances in image processing software have facilitated the entry of extended reality technology into clinical practice. In the last several years, the number of applications in cardiology has multiplied, with many promising to become standard of care. We review many of these applications in the areas of patient and physician education, cardiac rehabilitation, pre-procedural planning and intraprocedural use. The rapid integration of these approaches into the many facets of cardiology suggests that they will one day become an every-day part of physician practice

    Exploring User Needs in the Development of a Virtual Reality-Based Advanced Life Support Training Platform: Exploratory Usability Study

    Get PDF
    Background: Traditional methods of delivering Advanced Life Support (ALS) training and reaccreditation are resource-intensive and costly. Interactive simulations and gameplay using virtual reality (VR) technology can complement traditional training processes as a cost-effective, engaging, and flexible training tool. Objective: This exploratory study aimed to determine the specific user needs of clinicians engaging with a new interactive VR ALS simulation (ALS-SimVR) application to inform the ongoing development of such training platforms. Methods: Semistructured interviews were conducted with experienced clinicians (n=10, median age=40.9 years) following a single playthrough of the application. All clinicians have been directly involved in the delivery of ALS training in both clinical and educational settings (median years of ALS experience=12.4; all had minimal or no VR experience). Interviews were supplemented with an assessment of usability (using heuristic evaluation) and presence. Results: The ALS-SimVR training app was well received. Thematic analysis of the interviews revealed five main areas of user needs that can inform future design efforts for creating engaging VR training apps: affordances, agency, diverse input modalities, mental models, and advanced roles. Conclusions: This study was conducted to identify the needs of clinicians engaging with ALS-SimVR. However, our findings revealed broader design considerations that will be crucial in guiding future work in this area. Although aligning the training scenarios with accepted teaching algorithms is important, our findings reveal that improving user experience and engagement requires careful attention to technology-specific issues such as input modalities

    Holo-BLSD – A holographic tool for self-training and self-evaluation of emergency response skills

    Get PDF
    In case of cardiac arrest, prompt intervention of bystanders can be vital in saving lives. Basic Life Support and Defibrillation (BLSD) is a procedure designed to deliver a proficient emergency first response. Developing skills in BLSD in a large part of the population is a primary educational goal of resuscitation medicine. In this context, novel computer science technologies like Augmented Reality (AR) and Virtual Reality (VR) can alleviate some of the drawbacks of traditional instructor-led courses, especially concerning time and cost constraints. This paper presents Holo-BLSD, an AR system that allows users to learn and train the different operations involved in BLSD and receive an automatic assessment. The system uses a standard manikin which is quotes{augmented} by an interactive virtual environment that reproduces realistic emergency scenarios. The proposed approach has been validated through a user study. Subjective results confirmed the usability of the devised tool and its capability to stimulate learners' attention. Objective results indicated no statistical significance in the differences between the examiners' evaluation of users who underwent traditional and AR training; they also showed a close agreement between expert and automatic assessments, suggesting that Holo-BLSD can be regarded as an effective self-learning method and a reliable self-evaluation tool

    Development and Validation of a Hybrid Virtual/Physical Nuss Procedure Surgical Trainer

    Get PDF
    With continuous advancements and adoption of minimally invasive surgery, proficiency with nontrivial surgical skills involved is becoming a greater concern. Consequently, the use of surgical simulation has been increasingly embraced by many for training and skill transfer purposes. Some systems utilize haptic feedback within a high-fidelity anatomically-correct virtual environment whereas others use manikins, synthetic components, or box trainers to mimic primary components of a corresponding procedure. Surgical simulation development for some minimally invasive procedures is still, however, suboptimal or otherwise embryonic. This is true for the Nuss procedure, which is a minimally invasive surgery for correcting pectus excavatum (PE) – a congenital chest wall deformity. This work aims to address this gap by exploring the challenges of developing both a purely virtual and a purely physical simulation platform of the Nuss procedure and their implications in a training context. This work then describes the development of a hybrid mixed-reality system that integrates virtual and physical constituents as well as an augmentation of the haptic interface, to carry out a reproduction of the primary steps of the Nuss procedure and satisfy clinically relevant prerequisites for its training platform. Furthermore, this work carries out a user study to investigate the system’s face, content, and construct validity to establish its faithfulness as a training platform
    • …
    corecore