1,967 research outputs found

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Size Matters: Microservices Research and Applications

    Full text link
    In this chapter we offer an overview of microservices providing the introductory information that a reader should know before continuing reading this book. We introduce the idea of microservices and we discuss some of the current research challenges and real-life software applications where the microservice paradigm play a key role. We have identified a set of areas where both researcher and developer can propose new ideas and technical solutions.Comment: arXiv admin note: text overlap with arXiv:1706.0735

    Migrating to Cloud-Native Architectures Using Microservices: An Experience Report

    Full text link
    Migration to the cloud has been a popular topic in industry and academia in recent years. Despite many benefits that the cloud presents, such as high availability and scalability, most of the on-premise application architectures are not ready to fully exploit the benefits of this environment, and adapting them to this environment is a non-trivial task. Microservices have appeared recently as novel architectural styles that are native to the cloud. These cloud-native architectures can facilitate migrating on-premise architectures to fully benefit from the cloud environments because non-functional attributes, like scalability, are inherent in this style. The existing approaches on cloud migration does not mostly consider cloud-native architectures as their first-class citizens. As a result, the final product may not meet its primary drivers for migration. In this paper, we intend to report our experience and lessons learned in an ongoing project on migrating a monolithic on-premise software architecture to microservices. We concluded that microservices is not a one-fit-all solution as it introduces new complexities to the system, and many factors, such as distribution complexities, should be considered before adopting this style. However, if adopted in a context that needs high flexibility in terms of scalability and availability, it can deliver its promised benefits

    Microservices Architecture Enables DevOps: an Experience Report on Migration to a Cloud-Native Architecture

    Get PDF
    This article reports on experiences and lessons learned during incremental migration and architectural refactoring of a commercial mobile back end as a service to microservices architecture. It explains how the researchers adopted DevOps and how this facilitated a smooth migration

    Performance Evaluation of Microservices Architectures using Containers

    Get PDF
    Microservices architecture has started a new trend for application development for a number of reasons: (1) to reduce complexity by using tiny services; (2) to scale, remove and deploy parts of the system easily; (3) to improve flexibility to use different frameworks and tools; (4) to increase the overall scalability; and (5) to improve the resilience of the system. Containers have empowered the usage of microservices architectures by being lightweight, providing fast start-up times, and having a low overhead. Containers can be used to develop applications based on monolithic architectures where the whole system runs inside a single container or inside a microservices architecture where one or few processes run inside the containers. Two models can be used to implement a microservices architecture using containers: master-slave, or nested-container. The goal of this work is to compare the performance of CPU and network running benchmarks in the two aforementioned models of microservices architecture hence provide a benchmark analysis guidance for system designers.Comment: Submitted to the 14th IEEE International Symposium on Network Computing and Applications (IEEE NCA15). Partially funded by European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 639595) - HiEST Projec
    corecore