81,293 research outputs found

    The Topology ToolKit

    Full text link
    This system paper presents the Topology ToolKit (TTK), a software platform designed for topological data analysis in scientific visualization. TTK provides a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct, dependence-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions. TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK's website

    IGUANA Architecture, Framework and Toolkit for Interactive Graphics

    Full text link
    IGUANA is a generic interactive visualisation framework based on a C++ component model. It provides powerful user interface and visualisation primitives in a way that is not tied to any particular physics experiment or detector design. The article describes interactive visualisation tools built using IGUANA for the CMS and D0 experiments, as well as generic GEANT4 and GEANT3 applications. It covers features of the graphical user interfaces, 3D and 2D graphics, high-quality vector graphics output for print media, various textual, tabular and hierarchical data views, and integration with the application through control panels, a command line and different multi-threading models.Comment: Presented at the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages LaTeX, 4 eps figures. PSN MOLT008 More and higher res figs at http://iguana.web.cern.ch/iguana/snapshot/main/gallery.htm

    Monitoring extensions for component-based distributed software

    Get PDF
    This paper defines a generic class of monitoring extensions to component-based distributed enterprise software. Introducing a monitoring extension to a legacy application system can be very costly. In this paper, we identify the minimum support for application monitoring within the generic components of a distributed system, necessary for rapid development of new monitoring extensions. Furthermore, this paper offers an approach for design and implementation of monitoring extensions at reduced cost. A framework of basic facilities supporting the monitoring extensions is presented. These facilities handle different aspects critical to the monitoring process, such as ordering of the generated monitoring events, decoupling of the application components from the components of the monitoring extensions, delivery of the monitoring events to multiple consumers, etc.\ud The work presented in this paper is being validated in the prototype of a large distributed system, where a specific monitoring extension is built as a tool for debugging and testing the application behaviour.\u

    Media-based navigation with generic links

    No full text

    Using CamiTK for rapid prototyping of interactive Computer Assisted Medical Intervention applications

    Full text link
    Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc

    SGXIO: Generic Trusted I/O Path for Intel SGX

    Full text link
    Application security traditionally strongly relies upon security of the underlying operating system. However, operating systems often fall victim to software attacks, compromising security of applications as well. To overcome this dependency, Intel introduced SGX, which allows to protect application code against a subverted or malicious OS by running it in a hardware-protected enclave. However, SGX lacks support for generic trusted I/O paths to protect user input and output between enclaves and I/O devices. This work presents SGXIO, a generic trusted path architecture for SGX, allowing user applications to run securely on top of an untrusted OS, while at the same time supporting trusted paths to generic I/O devices. To achieve this, SGXIO combines the benefits of SGX's easy programming model with traditional hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure debug enclaves to behave like secure production enclaves. SGXIO surpasses traditional use cases in cloud computing and makes SGX technology usable for protecting user-centric, local applications against kernel-level keyloggers and likewise. It is compatible to unmodified operating systems and works on a modern commodity notebook out of the box. Hence, SGXIO is particularly promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1
    • …
    corecore