43,931 research outputs found

    Characterizing and Subsetting Big Data Workloads

    Full text link
    Big data benchmark suites must include a diversity of data and workloads to be useful in fairly evaluating big data systems and architectures. However, using truly comprehensive benchmarks poses great challenges for the architecture community. First, we need to thoroughly understand the behaviors of a variety of workloads. Second, our usual simulation-based research methods become prohibitively expensive for big data. As big data is an emerging field, more and more software stacks are being proposed to facilitate the development of big data applications, which aggravates hese challenges. In this paper, we first use Principle Component Analysis (PCA) to identify the most important characteristics from 45 metrics to characterize big data workloads from BigDataBench, a comprehensive big data benchmark suite. Second, we apply a clustering technique to the principle components obtained from the PCA to investigate the similarity among big data workloads, and we verify the importance of including different software stacks for big data benchmarking. Third, we select seven representative big data workloads by removing redundant ones and release the BigDataBench simulation version, which is publicly available from http://prof.ict.ac.cn/BigDataBench/simulatorversion/.Comment: 11 pages, 6 figures, 2014 IEEE International Symposium on Workload Characterizatio

    A virtual workspace for hybrid multidimensional scaling algorithms

    Get PDF
    In visualising multidimensional data, it is well known that different types of algorithms to process them. Data sets might be distinguished according to volume, variable types and distribution, and each of these characteristics imposes constraints upon the choice of applicable algorithms for their visualization. Previous work has shown that a hybrid algorithmic approach can be successful in addressing the impact of data volume on the feasibility of multidimensional scaling (MDS). This suggests that hybrid combinations of appropriate algorithms might also successfully address other characteristics of data. This paper presents a system and framework in which a user can easily explore hybrid algorithms and the data flowing through them. Visual programming and a novel algorithmic architecture let the user semi-automatically define data flows and the co-ordination of multiple views

    A visual workspace for constructing hybrid MDS algorithms and coordinating multiple views

    Get PDF
    Data can be distinguished according to volume, variable types and distribution, and each of these characteristics imposes constraints upon the choice of applicable algorithms for their visualisation. This has led to an abundance of often disparate algorithmic techniques. Previous work has shown that a hybrid algorithmic approach can be successful in addressing the impact of data volume on the feasibility of multidimensional scaling (MDS). This paper presents a system and framework in which a user can easily explore algorithms as well as their hybrid conjunctions and the data flowing through them. Visual programming and a novel algorithmic architecture let the user semi-automatically define data flows and the co-ordination of multiple views of algorithmic and visualisation components. We propose that our approach has two main benefits: significant improvements in run times of MDS algorithms can be achieved, and intermediate views of the data and the visualisation program structure can provide greater insight and control over the visualisation process

    Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning

    Full text link
    The main goal of this study is to extract a set of brain networks in multiple time-resolutions to analyze the connectivity patterns among the anatomic regions for a given cognitive task. We suggest a deep architecture which learns the natural groupings of the connectivity patterns of human brain in multiple time-resolutions. The suggested architecture is tested on task data set of Human Connectome Project (HCP) where we extract multi-resolution networks, each of which corresponds to a cognitive task. At the first level of this architecture, we decompose the fMRI signal into multiple sub-bands using wavelet decompositions. At the second level, for each sub-band, we estimate a brain network extracted from short time windows of the fMRI signal. At the third level, we feed the adjacency matrices of each mesh network at each time-resolution into an unsupervised deep learning algorithm, namely, a Stacked De- noising Auto-Encoder (SDAE). The outputs of the SDAE provide a compact connectivity representation for each time window at each sub-band of the fMRI signal. We concatenate the learned representations of all sub-bands at each window and cluster them by a hierarchical algorithm to find the natural groupings among the windows. We observe that each cluster represents a cognitive task with a performance of 93% Rand Index and 71% Adjusted Rand Index. We visualize the mean values and the precisions of the networks at each component of the cluster mixture. The mean brain networks at cluster centers show the variations among cognitive tasks and the precision of each cluster shows the within cluster variability of networks, across the subjects.Comment: 6 pages, 3 figures, submitted to The 17th annual IEEE International Conference on BioInformatics and BioEngineerin

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018
    • …
    corecore