144,620 research outputs found

    Active management of multi-service networks.

    Get PDF
    Future multiservice networks will be extremely large and complex. Novel management solutions will be required to keep the management costs reasonable. Active networking enables management to be delegated to network users as a large set of independent small scale management systems. A novel architecture for an active network based management solution for multiservice networking is presented

    Poseidon: Mitigating Interest Flooding DDoS Attacks in Named Data Networking

    Full text link
    Content-Centric Networking (CCN) is an emerging networking paradigm being considered as a possible replacement for the current IP-based host-centric Internet infrastructure. In CCN, named content becomes a first-class entity. CCN focuses on content distribution, which dominates current Internet traffic and is arguably not well served by IP. Named-Data Networking (NDN) is an example of CCN. NDN is also an active research project under the NSF Future Internet Architectures (FIA) program. FIA emphasizes security and privacy from the outset and by design. To be a viable Internet architecture, NDN must be resilient against current and emerging threats. This paper focuses on distributed denial-of-service (DDoS) attacks; in particular we address interest flooding, an attack that exploits key architectural features of NDN. We show that an adversary with limited resources can implement such attack, having a significant impact on network performance. We then introduce Poseidon: a framework for detecting and mitigating interest flooding attacks. Finally, we report on results of extensive simulations assessing proposed countermeasure.Comment: The IEEE Conference on Local Computer Networks (LCN 2013

    SDN-based Active Content Networking

    Get PDF
    This paper proposes a Software Defined Networking (SDN)-based active content networking architecture for future media environments. The proposed architecture aims to provide customized delivery of various types of media content in order to satisfy various demands of users and service requirements. To this end, we have developed an active content processing model which provides in-network content processing through service objects that are integral parts of active content. The main benefits provided by the proposed model are high flexibility and creativity to meet the evolving future media environments

    Network support for multimedia applications using the Netlets architecture

    Get PDF
    Multi-party multimedia networking applications such as e-commerce, distributed data analysis, Internet TV and advanced collaborative environments feature stringent end-to-end Quality of Service (QoS) requirement and require globally distributed user groups to be interconnected. The variety of delivery requirements posed by such applications are best satisfied using highly customised networking protocols. Hence, a demand for networks to migrate from the current fixed service model to a more flexible architecture that accommodates a wide variety of networking services is emerging. New approaches are required in order to build such service oriented networks. Active networking is one such approach. Active networks treats the network as a programmable computation engine, which provides customised packet processing and forwarding operations for traffic flowing through network nodes. User applications can download new protocols into network elements at runtime, allowing rapid innovation of network services. This thesis makes the case for employing mobile agents to realise an active networking architecture, and describes such an architecture called the Netlets architecture. Netlets are autonomous, mobile components which persist and roam in the network independently, providing predefined network services. This thesis presents the design and implementation of the Netlet node and the service deployment m echanisms that are required to distribute Netlet services in the network. Using the Netlet toolkit, variety of network services were designed to provide network support for multimedia applications in the Internet. A service was implemented to enhance the working of the RSVP protocol in order to provide robust end-to-end QoS support even when the network is only partially QoS provisioned. A scalable and reliable multicast protocol was implemented using the unicast communication model that accommodate heterogeneous receiver terminals. Another service integrates client-side server selection support into web sessions established over the Internet. A service was also developed which provides QoS signalling support to legacy applications. It is shown that these Netlet services are of practical value using performance measurements to assess Netlet responsiveness. Netlet based solutions maybe deployed using existing technologies to provide support for a wide range of multimedia applications in the Internet. The Netlets architecture has thus been shown to allow value-added services to be added to existing networks. By optimising the Netlet architecture implementation, this may be extended to services operating on high-speed (1Gb/s and upwards) links. It thus shows promise as an architecture for building the next generation of active networking solutions

    Interference and communications among active network applications

    Get PDF
    This paper focuses on active networks applications and in particular on the possible interactions among these applications. Active networking is a very promising research field which has been developed recently, and which poses several interesting challenges to network designers. A number of proposals for e±cient active network architectures are already to be found in the literature. However, how two or more active network applications may interact has not being investigated so far. In this work, we consider a number of applications that have been designed to exploit the main features of active networks and we discuss what are the main benefits that these applications may derive from them. Then, we introduce some forms of interaction including interference and communications among applications, and identify the components of an active network architecture that are needed to support these forms of interaction. We conclude by presenting a brief example of an active network application exploiting the concept of interaction

    Cross-Layer Peer-to-Peer Track Identification and Optimization Based on Active Networking

    Get PDF
    P2P applications appear to emerge as ultimate killer applications due to their ability to construct highly dynamic overlay topologies with rapidly-varying and unpredictable traffic dynamics, which can constitute a serious challenge even for significantly over-provisioned IP networks. As a result, ISPs are facing new, severe network management problems that are not guaranteed to be addressed by statically deployed network engineering mechanisms. As a first step to a more complete solution to these problems, this paper proposes a P2P measurement, identification and optimisation architecture, designed to cope with the dynamicity and unpredictability of existing, well-known and future, unknown P2P systems. The purpose of this architecture is to provide to the ISPs an effective and scalable approach to control and optimise the traffic produced by P2P applications in their networks. This can be achieved through a combination of different application and network-level programmable techniques, leading to a crosslayer identification and optimisation process. These techniques can be applied using Active Networking platforms, which are able to quickly and easily deploy architectural components on demand. This flexibility of the optimisation architecture is essential to address the rapid development of new P2P protocols and the variation of known protocols

    A Performance Management Architecture for Peer-to-Peer Services based on Application- level Active Networks

    Get PDF
    Abstract We propose an application-level active networking-based architecture using modular "active proxylets" for managing p2p service. The approach combines applicationlevel and network-level performance control

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    Active networks: an evolution of the internet

    Get PDF
    Active Networks can be seen as an evolution of the classical model of packet-switched networks. The traditional and ”passive” network model is based on a static definition of the network node behaviour. Active Networks propose an “active” model where the intermediate nodes (switches and routers) can load and execute user code contained in the data units (packets). Active Networks are a programmable network model, where bandwidth and computation are both considered shared network resources. This approach opens up new interesting research fields. This paper gives a short introduction of Active Networks, discusses the advantages they introduce and presents the research advances in this field

    Flexible programmable networking: A reflective, component-based approach

    Get PDF
    The need for programmability and adaptability in networking systems is becoming increasingly important. More specifically, the challenge is in the ability to add services rapidly, and be able to deploy, configure and reconfigure them as easily as possible. Such demand is creating a considerable shift in the way networks are expected to operate in the future. This is the main aim of programmable networking research community, and in our project we are investigating a component-based approach to the structuring of programmable networking software. Our intention is to apply the notion of components, component frameworks and reflection ubiquitously, thus accommodating all the different elements that comprise a programmable networking system
    • 

    corecore