3,930 research outputs found

    Wi-Fi Teeter-Totter: Overclocking OFDM for Internet of Things

    Full text link
    The conventional high-speed Wi-Fi has recently become a contender for low-power Internet-of-Things (IoT) communications. OFDM continues its adoption in the new IoT Wi-Fi standard due to its spectrum efficiency that can support the demand of massive IoT connectivity. While the IoT Wi-Fi standard offers many new features to improve power and spectrum efficiency, the basic physical layer (PHY) structure of transceiver design still conforms to its conventional design rationale where access points (AP) and clients employ the same OFDM PHY. In this paper, we argue that current Wi-Fi PHY design does not take full advantage of the inherent asymmetry between AP and IoT. To fill the gap, we propose an asymmetric design where IoT devices transmit uplink packets using the lowest power while pushing all the decoding burdens to the AP side. Such a design utilizes the sufficient power and computational resources at AP to trade for the transmission (TX) power of IoT devices. The core technique enabling this asymmetric design is that the AP takes full power of its high clock rate to boost the decoding ability. We provide an implementation of our design and show that it can reduce the IoT's TX power by boosting the decoding capability at the receivers

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    Seamless roaming and guaranteed communication using a synchronized single-hop multi-gateway 802.15.4e TSCH network

    Get PDF
    Industrial wireless sensor networks (WSNs) are being used to improve the efficiency, productivity and safety of industrial processes. An open standard that is commonly used in such cases is IEEE 802.15.4e. Its TSCH mode employs a time synchronized based MAC scheme together with channel hopping to alleviate the impact of channel fading. Until now, most of the industrial WSNs have been designed to only support static nodes and are not able to deal with mobility. In this paper, we show how a single-hop, multi-gateway IEEE 802.15.4e TSCH network architecture can tackle the mobility problem. We introduce the Virtual Grand Master (VGM) concept that moves the synchronization point from separated Backbone Border Routers (BBRs) towards the backbone network. With time synchronization of all BBRs, mobile nodes can roam from one BBR to another without time desynchronization. In addition to time synchronization, we introduce a mechanism to synchronize the schedules between BBRs to support fast handover of mobile nodes.Comment: Short paper version of a paper submitted to Ad-Hoc Networks Journal by Elsevie
    corecore