620 research outputs found

    MURAC: A unified machine model for heterogeneous computers

    Get PDF
    Includes bibliographical referencesHeterogeneous computing enables the performance and energy advantages of multiple distinct processing architectures to be efficiently exploited within a single machine. These systems are capable of delivering large performance increases by matching the applications to architectures that are most suited to them. The Multiple Runtime-reconfigurable Architecture Computer (MURAC) model has been proposed to tackle the problems commonly found in the design and usage of these machines. This model presents a system-level approach that creates a clear separation of concerns between the system implementer and the application developer. The three key concepts that make up the MURAC model are a unified machine model, a unified instruction stream and a unified memory space. A simple programming model built upon these abstractions provides a consistent interface for interacting with the underlying machine to the user application. This programming model simplifies application partitioning between hardware and software and allows the easy integration of different execution models within the single control ow of a mixed-architecture application. The theoretical and practical trade-offs of the proposed model have been explored through the design of several systems. An instruction-accurate system simulator has been developed that supports the simulated execution of mixed-architecture applications. An embedded System-on-Chip implementation has been used to measure the overhead in hardware resources required to support the model, which was found to be minimal. An implementation of the model within an operating system on a tightly-coupled reconfigurable processor platform has been created. This implementation is used to extend the software scheduler to allow for the full support of mixed-architecture applications in a multitasking environment. Different scheduling strategies have been tested using this scheduler for mixed-architecture applications. The design and implementation of these systems has shown that a unified abstraction model for heterogeneous computers provides important usability benefits to system and application designers. These benefits are achieved through a consistent view of the multiple different architectures to the operating system and user applications. This allows them to focus on achieving their performance and efficiency goals by gaining the benefits of different execution models during runtime without the complex implementation details of the system-level synchronisation and coordination

    Hybrid FPGA: Architecture and Interface

    No full text
    Hybrid FPGAs (Field Programmable Gate Arrays) are composed of general-purpose logic resources with different granularities, together with domain-specific coarse-grained units. This thesis proposes a novel hybrid FPGA architecture with embedded coarse-grained Floating Point Units (FPUs) to improve the floating point capability of FPGAs. Based on the proposed hybrid FPGA architecture, we examine three aspects to optimise the speed and area for domain-specific applications. First, we examine the interface between large coarse-grained embedded blocks (EBs) and fine-grained elements in hybrid FPGAs. The interface includes parameters for varying: (1) aspect ratio of EBs, (2) position of the EBs in the FPGA, (3) I/O pins arrangement of EBs, (4) interconnect flexibility of EBs, and (5) location of additional embedded elements such as memory. Second, we examine the interconnect structure for hybrid FPGAs. We investigate how large and highdensity EBs affect the routing demand for hybrid FPGAs over a set of domain-specific applications. We then propose three routing optimisation methods to meet the additional routing demand introduced by large EBs: (1) identifying the best separation distance between EBs, (2) adding routing switches on EBs to increase routing flexibility, and (3) introducing wider channel width near the edge of EBs. We study and compare the trade-offs in delay, area and routability of these three optimisation methods. Finally, we employ common subgraph extraction to determine the number of floating point adders/subtractors, multipliers and wordblocks in the FPUs. The wordblocks include registers and can implement fixed point operations. We study the area, speed and utilisation trade-offs of the selected FPU subgraphs in a set of floating point benchmark circuits. We develop an optimised coarse-grained FPU, taking into account both architectural and system-level issues. Furthermore, we investigate the trade-offs between granularities and performance by composing small FPUs into a large FPU. The results of this thesis would help design a domain-specific hybrid FPGA to meet user requirements, by optimising for speed, area or a combination of speed and area

    Are coarse-grained overlays ready for general purpose application acceleration on FPGAs?

    Get PDF
    Combining processors with hardware accelerators has become a norm with systems-on-chip (SoCs) ever present in modern compute devices. Heterogeneous programmable system on chip platforms sometimes referred to as hybrid FPGAs, tightly couple general purpose processors with high performance reconfigurable fabrics, providing a more flexible alternative. We can now think of a software application with hardware accelerated portions that are reconfigured at runtime. While such ideas have been explored in the past, modern hybrid FPGAs are the first commercial platforms to enable this move to a more software oriented view, where reconfiguration enables hardware resources to be shared by multiple tasks in a bigger application. However, while the rapidly increasing logic density and more capable hard resources found in modern hybrid FPGA devices should make them widely deployable, they remain constrained within specialist application domains. This is due to both design productivity issues and a lack of suitable hardware abstraction to eliminate the need for working with platform-specific details, as server and desktop virtualization has done in a more general sense. To allow mainstream adoption of FPGA based accelerators in general purpose computing, there is a need to virtualize FPGAs and make them more accessible to application developers who are accustomed to software API abstractions and fast development cycles. In this paper, we discuss the role of overlay architectures in enabling general purpose FPGA application acceleration

    Mapping applications onto FPGA-centric clusters

    Full text link
    High Performance Computing (HPC) is becoming increasingly important throughout science and engineering as ever more complex problems must be solved through computational simulations. In these large computational applications, the latency of communication between processing nodes is often the key factor that limits performance. An emerging alternative computer architecture that addresses the latency problem is the FPGA-centric cluster (FCC); in these systems, the devices (FPGAs) are directly interconnected and thus many layers of hardware and software are avoided. The result can be scalability not currently achievable with other technologies. In FCCs, FPGAs serve multiple functions: accelerator, network interface card (NIC), and router. Moreover, because FPGAs are configurable, there is substantial opportunity to tailor the router hardware to the application; previous work has demonstrated that such application-aware configuration can effect a substantial improvement in hardware efficiency. One constraint of FCCs is that it is convenient for their interconnect to be static, direct, and have a two or three dimensional mesh topology. Thus, applications that are naturally of a different dimensionality (have a different logical topology) from that of the FCC must be remapped to obtain optimal performance. In this thesis we study various aspects of the mapping problem for FCCs. There are two major research thrusts. The first is finding the optimal mapping of logical to physical topology. This problem has received substantial attention by both the theory community, where topology mapping is referred to as graph embedding, and by the High Performance Computing (HPC) community, where it is a question of process placement. We explore the implications of the different mapping strategies on communication behavior in FCCs, especially on resulting load imbalance. The second major research thrust is built around the hypothesis that applications that need to be remapped (due to differing logical and physical topologies) will have different optimal router configurations from those applications that do not. For example, due to remapping, some virtual or physical communication links may have little occupancy; therefore fewer resources should be allocated to them. Critical here is the creation of a new set of parameterized hardware features that can be configured to best handle load imbalances caused by remapping. These two thrusts form a codesign loop: certain mapping algorithms may be differentially optimal due to application-aware router reconfiguration that accounts for this mapping. This thesis has four parts. The first part introduces the background and previous work related to communication in general and, in particular, how it is implemented in FCCs. We build on previous work on application-aware router configuration. The second part introduces topology mapping mechanisms including those derived from graph embeddings and a greedy algorithm commonly used in HPC. In the third part, topology mappings are evaluated for performance and imbalance; we note that different mapping strategies lead to different imbalances both in the overall network and in each node. The final part introduces reconfigure router design that allocates resources based on different imbalance situations caused by different mapping behaviors

    LEGaTO: first steps towards energy-efficient toolset for heterogeneous computing

    Get PDF
    LEGaTO is a three-year EU H2020 project which started in December 2017. The LEGaTO project will leverage task-based programming models to provide a software ecosystem for Made-in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC.Peer ReviewedPostprint (author's final draft

    FPGA structures for high speed and low overhead dynamic circuit specialization

    Get PDF
    A Field Programmable Gate Array (FPGA) is a programmable digital electronic chip. The FPGA does not come with a predefined function from the manufacturer; instead, the developer has to define its function through implementing a digital circuit on the FPGA resources. The functionality of the FPGA can be reprogrammed as desired and hence the name “field programmable”. FPGAs are useful in small volume digital electronic products as the design of a digital custom chip is expensive. Changing the FPGA (also called configuring it) is done by changing the configuration data (in the form of bitstreams) that defines the FPGA functionality. These bitstreams are stored in a memory of the FPGA called configuration memory. The SRAM cells of LookUp Tables (LUTs), Block Random Access Memories (BRAMs) and DSP blocks together form the configuration memory of an FPGA. The configuration data can be modified according to the user’s needs to implement the user-defined hardware. The simplest way to program the configuration memory is to download the bitstreams using a JTAG interface. However, modern techniques such as Partial Reconfiguration (PR) enable us to configure a part in the configuration memory with partial bitstreams during run-time. The reconfiguration is achieved by swapping in partial bitstreams into the configuration memory via a configuration interface called Internal Configuration Access Port (ICAP). The ICAP is a hardware primitive (macro) present in the FPGA used to access the configuration memory internally by an embedded processor. The reconfiguration technique adds flexibility to use specialized ci rcuits that are more compact and more efficient t han t heir b ulky c ounterparts. An example of such an implementation is the use of specialized multipliers instead of big generic multipliers in an FIR implementation with constant coefficients. To specialize these circuits and reconfigure during the run-time, researchers at the HES group proposed the novel technique called parameterized reconfiguration that can be used to efficiently and automatically implement Dynamic Circuit Specialization (DCS) that is built on top of the Partial Reconfiguration method. It uses the run-time reconfiguration technique that is tailored to implement a parameterized design. An application is said to be parameterized if some of its input values change much less frequently than the rest. These inputs are called parameters. Instead of implementing these parameters as regular inputs, in DCS these inputs are implemented as constants, and the application is optimized for the constants. For every change in parameter values, the design is re-optimized (specialized) during run-time and implemented by reconfiguring the optimized design for a new set of parameters. In DCS, the bitstreams of the parameterized design are expressed as Boolean functions of the parameters. For every infrequent change in parameters, a specialized FPGA configuration is generated by evaluating the corresponding Boolean functions, and the FPGA is reconfigured with the specialized configuration. A detailed study of overheads of DCS and providing suitable solutions with appropriate custom FPGA structures is the primary goal of the dissertation. I also suggest different improvements to the FPGA configuration memory architecture. After offering the custom FPGA structures, I investigated the role of DCS on FPGA overlays and the use of custom FPGA structures that help to reduce the overheads of DCS on FPGA overlays. By doing so, I hope I can convince the developer to use DCS (which now comes with minimal costs) in real-world applications. I start the investigations of overheads of DCS by implementing an adaptive FIR filter (using the DCS technique) on three different Xilinx FPGA platforms: Virtex-II Pro, Virtex-5, and Zynq-SoC. The study of how DCS behaves and what is its overhead in the evolution of the three FPGA platforms is the non-trivial basis to discover the costs of DCS. After that, I propose custom FPGA structures (reconfiguration controllers and reconfiguration drivers) to reduce the main overhead (reconfiguration time) of DCS. These structures not only reduce the reconfiguration time but also help curbing the power hungry part of the DCS system. After these chapters, I study the role of DCS on FPGA overlays. I investigate the effect of the proposed FPGA structures on Virtual-Coarse-Grained Reconfigurable Arrays (VCGRAs). I classify the VCGRA implementations into three types: the conventional VCGRA, partially parameterized VCGRA and fully parameterized VCGRA depending upon the level of parameterization. I have designed two variants of VCGRA grids for HPC image processing applications, namely, the MAC grid and Pixie. Finally, I try to tackle the reconfiguration time overhead at the hardware level of the FPGA by customizing the FPGA configuration memory architecture. In this part of my research, I propose to use a parallel memory structure to improve the reconfiguration time of DCS drastically. However, this improvement comes with a significant overhead of hardware resources which will need to be solved in future research on commercial FPGA configuration memory architectures

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    corecore