1,855 research outputs found

    Multi-Quality Auto-Tuning by Contract Negotiation

    Get PDF
    A characteristic challenge of software development is the management of omnipresent change. Classically, this constant change is driven by customers changing their requirements. The wish to optimally leverage available resources opens another source of change: the software systems environment. Software is tailored to specific platforms (e.g., hardware architectures) resulting in many variants of the same software optimized for different environments. If the environment changes, a different variant is to be used, i.e., the system has to reconfigure to the variant optimized for the arisen situation. The automation of such adjustments is subject to the research community of self-adaptive systems. The basic principle is a control loop, as known from control theory. The system (and environment) is continuously monitored, the collected data is analyzed and decisions for or against a reconfiguration are computed and realized. Central problems in this field, which are addressed in this thesis, are the management of interdependencies between non-functional properties of the system, the handling of multiple criteria subject to decision making and the scalability. In this thesis, a novel approach to self-adaptive software--Multi-Quality Auto-Tuning (MQuAT)--is presented, which provides design and operation principles for software systems which automatically provide the best possible utility to the user while producing the least possible cost. For this purpose, a component model has been developed, enabling the software developer to design and implement self-optimizing software systems in a model-driven way. This component model allows for the specification of the structure as well as the behavior of the system and is capable of covering the runtime state of the system. The notion of quality contracts is utilized to cover the non-functional behavior and, especially, the dependencies between non-functional properties of the system. At runtime the component model covers the runtime state of the system. This runtime model is used in combination with the contracts to generate optimization problems in different formalisms (Integer Linear Programming (ILP), Pseudo-Boolean Optimization (PBO), Ant Colony Optimization (ACO) and Multi-Objective Integer Linear Programming (MOILP)). Standard solvers are applied to derive solutions to these problems, which represent reconfiguration decisions, if the identified configuration differs from the current. Each approach is empirically evaluated in terms of its scalability showing the feasibility of all approaches, except for ACO, the superiority of ILP over PBO and the limits of all approaches: 100 component types for ILP, 30 for PBO, 10 for ACO and 30 for 2-objective MOILP. In presence of more than two objective functions the MOILP approach is shown to be infeasible

    A [email protected] Approach for Multi-objective Self-optimizing Software

    Get PDF
    This paper presents an approach to operate multi-objective self-optimizing software systems based on the [email protected] paradigm. In contrast to existing approaches, which are usually specific to a single or selected set of objectives (e.g., performance and/or reliability), the presented approach is generic in that it allows the software architect to model the relevant concerns of interest to self-optimization. At runtime, these models are interpreted and used to generate optimization problems. To evaluate the applicability of the approach, a scalability analysis is provided, showing the approach’s feasibility for at least two objectives

    Evaluation of software architectures under uncertainty:a systematic literature review

    Get PDF

    Artificial Intelligence Applied to Conceptual Design. A Review of Its Use in Architecture

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Conceptual architectural design is a complex process that draws on past experience and creativity to generate new designs. The application of artificial intelligence to this process should not be oriented toward finding a solution in a defined search space since the design requirements are not yet well defined in the conceptual stage. Instead, this process should be considered as an exploration of the requirements, as well as of possible solutions to meet those requirements. This work offers a tour of major research projects that apply artificial intelligence solutions to architectural conceptual design. We examine several approaches, but most of the work focuses on the use of evolutionary computing to perform these tasks. We note a marked increase in the number of papers in recent years, especially since 2015. Most employ evolutionary computing techniques, including cellular automata. Most initial approaches were oriented toward finding innovative and creative forms, while the latest research focuses on optimizing architectural form.This project was supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia (Ref. ED431G/01, ED431D 2017/16), and the Spanish Ministry of Economy and Competitiveness via funding of the unique installation BIOCAI (UNLC08-1E-002, UNLC13-13-3503) and the European Regional Development Funds (FEDER)Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/1

    Self-adaptation for energy efficiency in software systems

    Get PDF

    Proceedings of the 9th Arab Society for Computer Aided Architectural Design (ASCAAD) international conference 2021 (ASCAAD 2021): architecture in the age of disruptive technologies: transformation and challenges.

    Get PDF
    The ASCAAD 2021 conference theme is Architecture in the age of disruptive technologies: transformation and challenges. The theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration

    Finding Thermal Forms:A Method and Model for Thermally Defined Masonry Structures

    Get PDF
    corecore