723 research outputs found

    Enabling Distributed Knowledge Management: Managerial and Technological Implications

    Get PDF
    In this paper we show that the typical architecture of current KM systems re.ects an objectivistic epistemology and a traditional managerial control paradigm. We argue that such an objectivistic epistemology is inconsistent with many theories on the nature of knowledge, in which subjectivity and sociality are taken as essential features of knowledge creation and sharing. We show that adopting such a new epistemological view has dramatic consequences at an architectural, managerial and technological level

    BonFIRE: A multi-cloud test facility for internet of services experimentation

    Get PDF
    BonFIRE offers a Future Internet, multi-site, cloud testbed, targeted at the Internet of Services community, that supports large scale testing of applications, services and systems over multiple, geographically distributed, heterogeneous cloud testbeds. The aim of BonFIRE is to provide an infrastructure that gives experimenters the ability to control and monitor the execution of their experiments to a degree that is not found in traditional cloud facilities. The BonFIRE architecture has been designed to support key functionalities such as: resource management; monitoring of virtual and physical infrastructure metrics; elasticity; single document experiment descriptions; and scheduling. As for January 2012 BonFIRE release 2 is operational, supporting seven pilot experiments. Future releases will enhance the offering, including the interconnecting with networking facilities to provide access to routers, switches and bandwidth-on-demand systems. BonFIRE will be open for general use late 2012

    A Layered Component-Based Architecture of a Virtual Learning Environment

    Get PDF

    A Layered Component-Based Architecture of a Virtual Learning Environment

    Get PDF

    An architecture and execution environment for component integration rules

    Get PDF
    The Integration Rules (IRules) project at Arizona State University (http://www.eas.asu.edu/~irules) is developing a declarative event-based approach to component integration. Integration rules are based on the concept of active database rules, providing an active approach for specifying event- driven activity in a distributed environment. The IRules project consists of a knowledge model that specifies the IRules Definition Language and an execution model that supports integration rule execution. This research focuses on the execution model and the architectural design parts of the IRules project. The main objective of this research is to develop a distributed execution environment for using integration rules in the integration of black-box components. In particular, this research will investigate the design of an architecture that supports the IRules semantic framework, the development of an execution model for rule and transaction processing, and the design of a rule processing algorithm for coordinating the execution of integration rules. This research will combine the distributed computing framework of Jini, the asynchronous event notification mechanism of the Java Message Service (JMS), and the distributed blocking access functionality of JavaSpaces to support active rule processing in a distributed environment. The limitations of the underlying Enterprise JavaBeans (EJB) component model pose transaction processing challenges for the integration process. This research will develop a suitable transaction model and processing logic to overcome the limitations of the underlying EJB component model. Furthermore, the architectural design will allow an easy extension of the system to accommodate other component models. This research is expected to contribute to nested rule and transaction processing for active rules that have not been previously addressed in distributed rule processing environments. The development of the IRules execution environment will also contribute to the use of distributed rule- based techniques for eventdriven component integration
    corecore