5 research outputs found

    Requirements for a Distributed NFV Orchestration in a WMN-Based Disaster Network.

    Get PDF

    A distributed intelligent network based on CORBA and SCTP

    Get PDF
    The telecommunications services marketplace is undergoing radical change due to the rapid convergence and evolution of telecommunications and computing technologies. Traditionally telecommunications service providers’ ability to deliver network services has been through Intelligent Network (IN) platforms. The IN may be characterised as envisioning centralised processing of distributed service requests from a limited number of quasi-proprietary nodes with inflexible connections to the network management system and third party networks. The nodes are inter-linked by the operator’s highly reliable but expensive SS.7 network. To leverage this technology as the core of new multi-media services several key technical challenges must be overcome. These include: integration of the IN with new technologies for service delivery, enhanced integration with network management services, enabling third party service providers and reducing operating costs by using more general-purpose computing and networking equipment. In this thesis we present a general architecture that defines the framework and techniques required to realise an open, flexible, middleware (CORBA)-based distributed intelligent network (DIN). This extensible architecture naturally encapsulates the full range of traditional service network technologies, for example IN (fixed network), GSM-MAP and CAMEL. Fundamental to this architecture are mechanisms for inter-working with the existing IN infrastructure, to enable gradual migration within a domain and inter-working between IN and DIN domains. The DIN architecture compliments current research on third party service provision, service management and integration Internet-based servers. Given the dependence of such a distributed service platform on the transport network that links computational nodes, this thesis also includes a detailed study of the emergent IP-based telecommunications transport protocol of choice, Stream Control Transmission Protocol (SCTP). In order to comply with the rigorous performance constraints of this domain, prototyping, simulation and analytic modelling of the DIN based on SCTP have been carried out. This includes the first detailed analysis of the operation of SCTP congestion controls under a variety of network conditions leading to a number of suggested improvements in the operation of the protocol. Finally we describe a new analytic framework for dimensioning networks with competing multi-homed SCTP flows in a DIN. This framework can be used for any multi-homed SCTP network e.g. one transporting SIP or HTTP

    Secure interoperation of wireless technologies

    Get PDF
    Tremendous emphasis has been placed on wireless technologies recently and it is expected that mobile communications will become an even bigger key driver for growth and innovation in the near future. The purpose of this paper is to study the securing, development, integration and implementation of an always on, always available, and accessible from anywhere secure wireless communication environment. Our analysis of the different wireless technologies reveals that a number of obstacles have to be managed before truly transparent wireless public data consumer offering is available. Our concern revolves around the technical development and implementation efforts of integrated wireless technologies enveloped with management processes of change and evolution. Wireless technologies have influenced our daily lives and will undoubtedly continue to play a significant role in the future. This dissertation focuses on the interoperation of wireless technologies, exploring, evaluating and presenting representations of secure, fully integrated wireless environments. The purpose is to find a cost effective, open, viable, sustainable consumer orientated high data speed offering which not only adheres to basic security requirements but surpasses it. By bringing the network to the subscriber we generate an “always-on” and “always-available” solution for data requirements fulfilling an ever increasing human demand for access to resources anywhere, anytime. A background literature of various wireless technologies, techniques and value added services is provided. An approach for the securing of critical content over wireless links in chapter seven provides a basis for access by position concepts presented in chapter eight. This secure approach to location-aware mobile access control is an essential security enhancement in the integration and interoperation models illustrated in chapter nine. These models, appropriately named SWARM 1 and SWARM 2 (System for Wireless and Roaming Mobility), illustrate different approaches to achieving a secure, fully coherent, consumer orientated, wireless data communications environment.Dissertation (MSc (Computer Science))--University of Pretoria, 2003.Computer Scienceunrestricte

    Service composition based on SIP peer-to-peer networks

    Get PDF
    Today the telecommunication market is faced with the situation that customers are requesting for new telecommunication services, especially value added services. The concept of Next Generation Networks (NGN) seems to be a solution for this, so this concept finds its way into the telecommunication area. These customer expectations have emerged in the context of NGN and the associated migration of the telecommunication networks from traditional circuit-switched towards packet-switched networks. One fundamental aspect of the NGN concept is to outsource the intelligence of services from the switching plane onto separated Service Delivery Platforms using SIP (Session Initiation Protocol) to provide the required signalling functionality. Caused by this migration process towards NGN SIP has appeared as the major signalling protocol for IP (Internet Protocol) based NGN. This will lead in contrast to ISDN (Integrated Services Digital Network) and IN (Intelligent Network) to significantly lower dependences among the network and services and enables to implement new services much easier and faster. In addition, further concepts from the IT (Information Technology) namely SOA (Service-Oriented Architecture) have largely influenced the telecommunication sector forced by amalgamation of IT and telecommunications. The benefit of applying SOA in telecommunication services is the acceleration of service creation and delivery. Main features of the SOA are that services are reusable, discoverable combinable and independently accessible from any location. Integration of those features offers a broader flexibility and efficiency for varying demands on services. This thesis proposes a novel framework for service provisioning and composition in SIP-based peer-to-peer networks applying the principles of SOA. One key contribution of the framework is the approach to enable the provisioning and composition of services which is performed by applying SIP. Based on this, the framework provides a flexible and fast way to request the creation for composite services. Furthermore the framework enables to request and combine multimodal value-added services, which means that they are no longer limited regarding media types such as audio, video and text. The proposed framework has been validated by a prototype implementation

    5G Multi-access Edge Computing: Security, Dependability, and Performance

    Full text link
    The main innovation of the Fifth Generation (5G) of mobile networks is the ability to provide novel services with new and stricter requirements. One of the technologies that enable the new 5G services is the Multi-access Edge Computing (MEC). MEC is a system composed of multiple devices with computing and storage capabilities that are deployed at the edge of the network, i.e., close to the end users. MEC reduces latency and enables contextual information and real-time awareness of the local environment. MEC also allows cloud offloading and the reduction of traffic congestion. Performance is not the only requirement that the new 5G services have. New mission-critical applications also require high security and dependability. These three aspects (security, dependability, and performance) are rarely addressed together. This survey fills this gap and presents 5G MEC by addressing all these three aspects. First, we overview the background knowledge on MEC by referring to the current standardization efforts. Second, we individually present each aspect by introducing the related taxonomy (important for the not expert on the aspect), the state of the art, and the challenges on 5G MEC. Finally, we discuss the challenges of jointly addressing the three aspects.Comment: 33 pages, 11 figures, 15 tables. This paper is under review at IEEE Communications Surveys & Tutorials. Copyright IEEE 202
    corecore