87 research outputs found

    An approximation trichotomy for Boolean #CSP

    Get PDF
    We give a trichotomy theorem for the complexity of approximately counting the number of satisfying assignments of a Boolean CSP instance. Such problems are parameterised by a constraint language specifying the relations that may be used in constraints. If every relation in the constraint language is affine then the number of satisfying assignments can be exactly counted in polynomial time. Otherwise, if every relation in the constraint language is in the co-clone IM_2 from Post's lattice, then the problem of counting satisfying assignments is complete with respect to approximation-preserving reductions in the complexity class #RH\Pi_1. This means that the problem of approximately counting satisfying assignments of such a CSP instance is equivalent in complexity to several other known counting problems, including the problem of approximately counting the number of independent sets in a bipartite graph. For every other fixed constraint language, the problem is complete for #P with respect to approximation-preserving reductions, meaning that there is no fully polynomial randomised approximation scheme for counting satisfying assignments unless NP=RP

    The complexity of approximating conservative counting CSPs

    Get PDF
    We study the complexity of approximately solving the weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, there is a classification known for the case in which the domain of functions in F is Boolean. In this paper, we give a classification for the more general problem where functions in F have an arbitrary finite domain. We define the notions of weak log-modularity and weak log-supermodularity. We show that if F is weakly log-modular, then #CSP(F)is in FP. Otherwise, it is at least as difficult to approximate as #BIS, the problem of counting independent sets in bipartite graphs. #BIS is complete with respect to approximation-preserving reductions for a logically-defined complexity class #RHPi1, and is believed to be intractable. We further sub-divide the #BIS-hard case. If F is weakly log-supermodular, then we show that #CSP(F) is as easy as a (Boolean) log-supermodular weighted #CSP. Otherwise, we show that it is NP-hard to approximate. Finally, we give a full trichotomy for the arity-2 case, where #CSP(F) is in FP, or is #BIS-equivalent, or is equivalent in difficulty to #SAT, the problem of approximately counting the satisfying assignments of a Boolean formula in conjunctive normal form. We also discuss the algorithmic aspects of our classification.Comment: Minor revisio

    The complexity of counting locally maximal satisfying assignments of Boolean CSPs

    Get PDF
    We investigate the computational complexity of the problem of counting the maximal satisfying assignments of a Constraint Satisfaction Problem (CSP) over the Boolean domain {0,1}. A satisfying assignment is maximal if any new assignment which is obtained from it by changing a 0 to a 1 is unsatisfying. For each constraint language Gamma, #MaximalCSP(Gamma) denotes the problem of counting the maximal satisfying assignments, given an input CSP with constraints in Gamma. We give a complexity dichotomy for the problem of exactly counting the maximal satisfying assignments and a complexity trichotomy for the problem of approximately counting them. Relative to the problem #CSP(Gamma), which is the problem of counting all satisfying assignments, the maximal version can sometimes be easier but never harder. This finding contrasts with the recent discovery that approximately counting maximal independent sets in a bipartite graph is harder (under the usual complexity-theoretic assumptions) than counting all independent sets.Comment: V2 adds contextual material relating the results obtained here to earlier work in a different but related setting. The technical content is unchanged. V3 (this version) incorporates minor revisions. The title has been changed to better reflect what is novel in this work. This version has been accepted for publication in Theoretical Computer Science. 19 page

    The Complexity of Approximately Counting Tree Homomorphisms

    Full text link
    We study two computational problems, parameterised by a fixed tree H. #HomsTo(H) is the problem of counting homomorphisms from an input graph G to H. #WHomsTo(H) is the problem of counting weighted homomorphisms to H, given an input graph G and a weight function for each vertex v of G. Even though H is a tree, these problems turn out to be sufficiently rich to capture all of the known approximation behaviour in #P. We give a complete trichotomy for #WHomsTo(H). If H is a star then #WHomsTo(H) is in FP. If H is not a star but it does not contain a certain induced subgraph J_3 then #WHomsTo(H) is equivalent under approximation-preserving (AP) reductions to #BIS, the problem of counting independent sets in a bipartite graph. This problem is complete for the class #RHPi_1 under AP-reductions. Finally, if H contains an induced J_3 then #WHomsTo(H) is equivalent under AP-reductions to #SAT, the problem of counting satisfying assignments to a CNF Boolean formula. Thus, #WHomsTo(H) is complete for #P under AP-reductions. The results are similar for #HomsTo(H) except that a rich structure emerges if H contains an induced J_3. We show that there are trees H for which #HomsTo(H) is #SAT-equivalent (disproving a plausible conjecture of Kelk). There is an interesting connection between these homomorphism-counting problems and the problem of approximating the partition function of the ferromagnetic Potts model. In particular, we show that for a family of graphs J_q, parameterised by a positive integer q, the problem #HomsTo(H) is AP-interreducible with the problem of approximating the partition function of the q-state Potts model. It was not previously known that the Potts model had a homomorphism-counting interpretation. We use this connection to obtain some additional upper bounds for the approximation complexity of #HomsTo(J_q)

    Approximation for Maximum Surjective Constraint Satisfaction Problems

    Full text link
    Maximum surjective constraint satisfaction problems (Max-Sur-CSPs) are computational problems where we are given a set of variables denoting values from a finite domain B and a set of constraints on the variables. A solution to such a problem is a surjective mapping from the set of variables to B such that the number of satisfied constraints is maximized. We study the approximation performance that can be acccchieved by algorithms for these problems, mainly by investigating their relation with Max-CSPs (which are the corresponding problems without the surjectivity requirement). Our work gives a complexity dichotomy for Max-Sur-CSP(B) between PTAS and APX-complete, under the assumption that there is a complexity dichotomy for Max-CSP(B) between PO and APX-complete, which has already been proved on the Boolean domain and 3-element domains

    The Complexity of Weighted Boolean #CSP with Mixed Signs

    Get PDF
    We give a complexity dichotomy for the problem of computing the partition function of a weighted Boolean constraint satisfaction problem. Such a problem is parameterized by a set of rational-valued functions, which generalize constraints. Each function assigns a weight to every assignment to a set of Boolean variables. Our dichotomy extends previous work in which the weight functions were restricted to being non-negative. We represent a weight function as a product of the form (-1)^s g, where the polynomial s determines the sign of the weight and the non-negative function g determines its magnitude. We show that the problem of computing the partition function (the sum of the weights of all possible variable assignments) is in polynomial time if either every weight function can be defined by a "pure affine" magnitude with a quadratic sign polynomial or every function can be defined by a magnitude of "product type" with a linear sign polynomial. In all other cases, computing the partition function is FP^#P-complete.Comment: 24 page
    • …
    corecore