311 research outputs found

    A class of narrow-sense BCH codes over Fq\mathbb{F}_q of length qm−12\frac{q^m-1}{2}

    Full text link
    BCH codes with efficient encoding and decoding algorithms have many applications in communications, cryptography and combinatorics design. This paper studies a class of linear codes of length qm−12 \frac{q^m-1}{2} over Fq\mathbb{F}_q with special trace representation, where qq is an odd prime power. With the help of the inner distributions of some subsets of association schemes from bilinear forms associated with quadratic forms, we determine the weight enumerators of these codes. From determining some cyclotomic coset leaders δi\delta_i of cyclotomic cosets modulo qm−12 \frac{q^m-1}{2}, we prove that narrow-sense BCH codes of length qm−12 \frac{q^m-1}{2} with designed distance δi=qm−qm−12−1−q⌊m−32⌋+i−12\delta_i=\frac{q^m-q^{m-1}}{2}-1-\frac{q^{ \lfloor \frac{m-3}{2} \rfloor+i}-1}{2} have the corresponding trace representation, and have the minimal distance d=δid=\delta_i and the Bose distance dB=δid_B=\delta_i, where 1≤i≤⌊m+34⌋1\leq i\leq \lfloor \frac{m+3}{4} \rfloor

    Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications

    Get PDF
    Coding; Communications; Engineering; Networks; Information Theory; Algorithm

    Advances in Syndrome Coding based on Stochastic and Deterministic Matrices for Steganography

    Get PDF
    Steganographie ist die Kunst der vertraulichen Kommunikation. Anders als in der Kryptographie, wo der Austausch vertraulicher Daten für Dritte offensichtlich ist, werden die vertraulichen Daten in einem steganographischen System in andere, unauffällige Coverdaten (z.B. Bilder) eingebettet und so an den Empfänger übertragen. Ziel eines steganographischen Algorithmus ist es, die Coverdaten nur geringfügig zu ändern, um deren statistische Merkmale zu erhalten, und möglichst in unauffälligen Teilen des Covers einzubetten. Um dieses Ziel zu erreichen, werden verschiedene Ansätze der so genannten minimum-embedding-impact Steganographie basierend auf Syndromkodierung vorgestellt. Es wird dabei zwischen Ansätzen basierend auf stochastischen und auf deterministischen Matrizen unterschieden. Anschließend werden die Algorithmen bewertet, um Vorteile der Anwendung von Syndromkodierung herauszustellen

    Efficient Algorithms for Constructing Minimum-Weight Codewords in Some Extended Binary BCH Codes

    Full text link
    We present O(m3)O(m^3) algorithms for specifying the support of minimum-weight words of extended binary BCH codes of length n=2mn=2^m and designed distance d(m,s,i):=2m−1−s−2m−1−i−sd(m,s,i):=2^{m-1-s}-2^{m-1-i-s} for some values of m,i,sm,i,s, where mm may grow to infinity. The support is specified as the sum of two sets: a set of 22i−1−2i−12^{2i-1}-2^{i-1} elements, and a subspace of dimension m−2i−sm-2i-s, specified by a basis. In some detail, for designed distance 6⋅2j6\cdot 2^j, we have a deterministic algorithm for even m≥4m\geq 4, and a probabilistic algorithm with success probability 1−O(2−m)1-O(2^{-m}) for odd m>4m>4. For designed distance 28⋅2j28\cdot 2^j, we have a probabilistic algorithm with success probability ≥1/3−O(2−m/2)\geq 1/3-O(2^{-m/2}) for even m≥6m\geq 6. Finally, for designed distance 120⋅2j120\cdot 2^j, we have a deterministic algorithm for m≥8m\geq 8 divisible by 44. We also present a construction via Gold functions when 2i∣m2i|m. Our construction builds on results of Kasami and Lin (IEEE T-IT, 1972), who proved that for extended binary BCH codes of designed distance d(m,s,i)d(m,s,i), the minimum distance equals the designed distance. Their proof makes use of a non-constructive result of Berlekamp (Inform. Contrl., 1970), and a constructive ``down-conversion theorem'' that converts some words in BCH codes to lower-weight words in BCH codes of lower designed distance. Our main contribution is in replacing the non-constructive argument of Berlekamp by a low-complexity algorithm. In one aspect, we extends the results of Grigorescu and Kaufman (IEEE T-IT, 2012), who presented explicit minimum-weight words for designed distance 66 (and hence also for designed distance 6⋅2j6\cdot 2^j, by a well-known ``up-conversion theorem''), as we cover more cases of the minimum distance. However, the minimum-weight words we construct are not affine generators for designed distance >6>6

    Error Control Coding for Flash Memory

    Get PDF
    • …
    corecore