259 research outputs found

    On three soft rectangle packing problems with guillotine constraints

    Full text link
    We investigate how to partition a rectangular region of length L1L_1 and height L2L_2 into nn rectangles of given areas (a1,,an)(a_1, \dots, a_n) using two-stage guillotine cuts, so as to minimize either (i) the sum of the perimeters, (ii) the largest perimeter, or (iii) the maximum aspect ratio of the rectangles. These problems play an important role in the ongoing Vietnamese land-allocation reform, as well as in the optimization of matrix multiplication algorithms. We show that the first problem can be solved to optimality in O(nlogn)\mathcal{O}(n \log n), while the two others are NP-hard. We propose mixed integer programming (MIP) formulations and a binary search-based approach for solving the NP-hard problems. Experimental analyses are conducted to compare the solution approaches in terms of computational efficiency and solution quality, for different objectives

    Survey of two-dimensional acute triangulations

    Get PDF
    AbstractWe give a brief introduction to the topic of two-dimensional acute triangulations, mention results on related areas, survey existing achievements–with emphasis on recent activity–and list related open problems, both concrete and conceptual

    The predictor-adaptor paradigm : automation of custom layout by flexible design

    Get PDF

    Decomposing and packing polygons / Dania el-Khechen.

    Get PDF
    In this thesis, we study three different problems in the field of computational geometry: the partitioning of a simple polygon into two congruent components, the partitioning of squares and rectangles into equal area components while minimizing the perimeter of the cuts, and the packing of the maximum number of squares in an orthogonal polygon. To solve the first problem, we present three polynomial time algorithms which given a simple polygon P partitions it, if possible, into two congruent and possibly nonsimple components P 1 and P 2 : an O ( n 2 log n ) time algorithm for properly congruent components and an O ( n 3 ) time algorithm for mirror congruent components. In our analysis of the second problem, we experimentally find new bounds on the optimal partitions of squares and rectangles into equal area components. The visualization of the best determined solutions allows us to conjecture some characteristics of a class of optimal solutions. Finally, for the third problem, we present three linear time algorithms for packing the maximum number of unit squares in three subclasses of orthogonal polygons: the staircase polygons, the pyramids and Manhattan skyline polygons. We also study a special case of the problem where the given orthogonal polygon has vertices with integer coordinates and the squares to pack are (2 {604} 2) squares. We model the latter problem with a binary integer program and we develop a system that produces and visualizes optimal solutions. The observation of such solutions aided us in proving some characteristics of a class of optimal solutions

    Hinged Dissections Exist

    Full text link
    We prove that any finite collection of polygons of equal area has a common hinged dissection. That is, for any such collection of polygons there exists a chain of polygons hinged at vertices that can be folded in the plane continuously without self-intersection to form any polygon in the collection. This result settles the open problem about the existence of hinged dissections between pairs of polygons that goes back implicitly to 1864 and has been studied extensively in the past ten years. Our result generalizes and indeed builds upon the result from 1814 that polygons have common dissections (without hinges). We also extend our common dissection result to edge-hinged dissections of solid 3D polyhedra that have a common (unhinged) dissection, as determined by Dehn's 1900 solution to Hilbert's Third Problem. Our proofs are constructive, giving explicit algorithms in all cases. For a constant number of planar polygons, both the number of pieces and running time required by our construction are pseudopolynomial. This bound is the best possible, even for unhinged dissections. Hinged dissections have possible applications to reconfigurable robotics, programmable matter, and nanomanufacturing.Comment: 22 pages, 14 figure

    Fast Fencing

    Get PDF
    We consider very natural "fence enclosure" problems studied by Capoyleas, Rote, and Woeginger and Arkin, Khuller, and Mitchell in the early 90s. Given a set SS of nn points in the plane, we aim at finding a set of closed curves such that (1) each point is enclosed by a curve and (2) the total length of the curves is minimized. We consider two main variants. In the first variant, we pay a unit cost per curve in addition to the total length of the curves. An equivalent formulation of this version is that we have to enclose nn unit disks, paying only the total length of the enclosing curves. In the other variant, we are allowed to use at most kk closed curves and pay no cost per curve. For the variant with at most kk closed curves, we present an algorithm that is polynomial in both nn and kk. For the variant with unit cost per curve, or unit disks, we present a near-linear time algorithm. Capoyleas, Rote, and Woeginger solved the problem with at most kk curves in nO(k)n^{O(k)} time. Arkin, Khuller, and Mitchell used this to solve the unit cost per curve version in exponential time. At the time, they conjectured that the problem with kk curves is NP-hard for general kk. Our polynomial time algorithm refutes this unless P equals NP
    corecore