2,237 research outputs found

    Online Knapsack Problem under Expected Capacity Constraint

    Full text link
    Online knapsack problem is considered, where items arrive in a sequential fashion that have two attributes; value and weight. Each arriving item has to be accepted or rejected on its arrival irrevocably. The objective is to maximize the sum of the value of the accepted items such that the sum of their weights is below a budget/capacity. Conventionally a hard budget/capacity constraint is considered, for which variety of results are available. In modern applications, e.g., in wireless networks, data centres, cloud computing, etc., enforcing the capacity constraint in expectation is sufficient. With this motivation, we consider the knapsack problem with an expected capacity constraint. For the special case of knapsack problem, called the secretary problem, where the weight of each item is unity, we propose an algorithm whose probability of selecting any one of the optimal items is equal to 1−1/e1-1/e and provide a matching lower bound. For the general knapsack problem, we propose an algorithm whose competitive ratio is shown to be 1/4e1/4e that is significantly better than the best known competitive ratio of 1/10e1/10e for the knapsack problem with the hard capacity constraint.Comment: To appear in IEEE INFOCOM 2018, April 2018, Honolulu H

    Time and multiple objectives in scheduling and routing problems

    Get PDF
    Many optimization problems encountered in practice are multi-objective by nature, i.e., different objectives are conflicting and equally important. Many times, it is not desirable to drop some of them or to optimize them in a composite single objective or hierarchical manner. Furthermore, cost parameters change over time which makes optimization problems harder. For instance, in the transport sector, travel costs are a function of travel time which changes depending on the time of the day a vehicle is travelling (e.g., due to road congestion). Road congestion results in tremendous delays which lead to a decrease in the service quality and the responsiveness of logistic service providers. In Chapter 2, we develop a generic approach to deal with Multi-Objective Scheduling Problems (MOSPs) with State-Dependent Cost Parameters. The aim is to determine the set of Pareto solutions that capture the trade offs between the different conflicting objectives. Due to the complexity of MOSPs, an efficient approximation based on dynamic programming is developed. The approximation has a provable worse case performance guarantee. Even though the generated approximate Pareto front consist of fewer solutions, it still represents a good coverage of the true Pareto front. Furthermore, considerable gains in computation times are achieved. In Chapter 3, the developed methodology is validated on the multi-objective timedependent knapsack problem. In the classical knapsack problem, the input consists of a knapsack with a finite capacity and a set of items, each with a certain weight and a cost. A feasible solution to the knapsack problem is a selection of items such that their total weight does not exceed the knapsack capacity. The goal is to maximize the single objective function consisting of the total pro t of the selected items. We extend the classical knapsack problem in two ways. First, we consider time-dependent profits (e.g., in a retail environment profit depends on whether it is Christmas or not)

    Stochastic Budget Optimization in Internet Advertising

    Full text link
    Internet advertising is a sophisticated game in which the many advertisers "play" to optimize their return on investment. There are many "targets" for the advertisements, and each "target" has a collection of games with a potentially different set of players involved. In this paper, we study the problem of how advertisers allocate their budget across these "targets". In particular, we focus on formulating their best response strategy as an optimization problem. Advertisers have a set of keywords ("targets") and some stochastic information about the future, namely a probability distribution over scenarios of cost vs click combinations. This summarizes the potential states of the world assuming that the strategies of other players are fixed. Then, the best response can be abstracted as stochastic budget optimization problems to figure out how to spread a given budget across these keywords to maximize the expected number of clicks. We present the first known non-trivial poly-logarithmic approximation for these problems as well as the first known hardness results of getting better than logarithmic approximation ratios in the various parameters involved. We also identify several special cases of these problems of practical interest, such as with fixed number of scenarios or with polynomial-sized parameters related to cost, which are solvable either in polynomial time or with improved approximation ratios. Stochastic budget optimization with scenarios has sophisticated technical structure. Our approximation and hardness results come from relating these problems to a special type of (0/1, bipartite) quadratic programs inherent in them. Our research answers some open problems raised by the authors in (Stochastic Models for Budget Optimization in Search-Based Advertising, Algorithmica, 58 (4), 1022-1044, 2010).Comment: FINAL versio
    • …
    corecore