134 research outputs found

    Powers of Hamilton cycles in pseudorandom graphs

    Full text link
    We study the appearance of powers of Hamilton cycles in pseudorandom graphs, using the following comparatively weak pseudorandomness notion. A graph GG is (ε,p,k,)(\varepsilon,p,k,\ell)-pseudorandom if for all disjoint XX and YV(G)Y\subset V(G) with Xεpkn|X|\ge\varepsilon p^kn and Yεpn|Y|\ge\varepsilon p^\ell n we have e(X,Y)=(1±ε)pXYe(X,Y)=(1\pm\varepsilon)p|X||Y|. We prove that for all β>0\beta>0 there is an ε>0\varepsilon>0 such that an (ε,p,1,2)(\varepsilon,p,1,2)-pseudorandom graph on nn vertices with minimum degree at least βpn\beta pn contains the square of a Hamilton cycle. In particular, this implies that (n,d,λ)(n,d,\lambda)-graphs with λd5/2n3/2\lambda\ll d^{5/2 }n^{-3/2} contain the square of a Hamilton cycle, and thus a triangle factor if nn is a multiple of 33. This improves on a result of Krivelevich, Sudakov and Szab\'o [Triangle factors in sparse pseudo-random graphs, Combinatorica 24 (2004), no. 3, 403--426]. We also extend our result to higher powers of Hamilton cycles and establish corresponding counting versions.Comment: 30 pages, 1 figur

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201

    The Green-Tao theorem: an exposition

    Get PDF
    The celebrated Green-Tao theorem states that the prime numbers contain arbitrarily long arithmetic progressions. We give an exposition of the proof, incorporating several simplifications that have been discovered since the original paper.Comment: 26 pages, 4 figure

    Approximate Hamilton decompositions of robustly expanding regular digraphs

    Get PDF
    We show that every sufficiently large r-regular digraph G which has linear degree and is a robust outexpander has an approximate decomposition into edge-disjoint Hamilton cycles, i.e. G contains a set of r-o(r) edge-disjoint Hamilton cycles. Here G is a robust outexpander if for every set S which is not too small and not too large, the `robust' outneighbourhood of S is a little larger than S. This generalises a result of K\"uhn, Osthus and Treglown on approximate Hamilton decompositions of dense regular oriented graphs. It also generalises a result of Frieze and Krivelevich on approximate Hamilton decompositions of quasirandom (di)graphs. In turn, our result is used as a tool by K\"uhn and Osthus to prove that any sufficiently large r-regular digraph G which has linear degree and is a robust outexpander even has a Hamilton decomposition.Comment: Final version, published in SIAM Journal Discrete Mathematics. 44 pages, 2 figure

    Finding any given 2-factor in sparse pseudorandom graphs efficiently

    Full text link
    Given an nn-vertex pseudorandom graph GG and an nn-vertex graph HH with maximum degree at most two, we wish to find a copy of HH in GG, i.e.\ an embedding φ ⁣:V(H)V(G)\varphi\colon V(H)\to V(G) so that φ(u)φ(v)E(G)\varphi(u)\varphi(v)\in E(G) for all uvE(H)uv\in E(H). Particular instances of this problem include finding a triangle-factor and finding a Hamilton cycle in GG. Here, we provide a deterministic polynomial time algorithm that finds a given HH in any suitably pseudorandom graph GG. The pseudorandom graphs we consider are (p,λ)(p,\lambda)-bijumbled graphs of minimum degree which is a constant proportion of the average degree, i.e.\ Ω(pn)\Omega(pn). A (p,λ)(p,\lambda)-bijumbled graph is characterised through the discrepancy property: e(A,B)pAB<λAB\left|e(A,B)-p|A||B|\right |<\lambda\sqrt{|A||B|} for any two sets of vertices AA and BB. Our condition λ=O(p2n/logn)\lambda=O(p^2n/\log n) on bijumbledness is within a log factor from being tight and provides a positive answer to a recent question of Nenadov. We combine novel variants of the absorption-reservoir method, a powerful tool from extremal graph theory and random graphs. Our approach is based on that of Nenadov (\emph{Bulletin of the London Mathematical Society}, to appear) and on ours (arXiv:1806.01676), together with additional ideas and simplifications.Comment: 21 page

    Deterministic Approximation of Random Walks in Small Space

    Get PDF
    We give a deterministic, nearly logarithmic-space algorithm that given an undirected graph G, a positive integer r, and a set S of vertices, approximates the conductance of S in the r-step random walk on G to within a factor of 1+epsilon, where epsilon>0 is an arbitrarily small constant. More generally, our algorithm computes an epsilon-spectral approximation to the normalized Laplacian of the r-step walk. Our algorithm combines the derandomized square graph operation [Eyal Rozenman and Salil Vadhan, 2005], which we recently used for solving Laplacian systems in nearly logarithmic space [Murtagh et al., 2017], with ideas from [Cheng et al., 2015], which gave an algorithm that is time-efficient (while ours is space-efficient) and randomized (while ours is deterministic) for the case of even r (while ours works for all r). Along the way, we provide some new results that generalize technical machinery and yield improvements over previous work. First, we obtain a nearly linear-time randomized algorithm for computing a spectral approximation to the normalized Laplacian for odd r. Second, we define and analyze a generalization of the derandomized square for irregular graphs and for sparsifying the product of two distinct graphs. As part of this generalization, we also give a strongly explicit construction of expander graphs of every size

    Proof of Koml\'os's conjecture on Hamiltonian subsets

    Get PDF
    Koml\'os conjectured in 1981 that among all graphs with minimum degree at least dd, the complete graph Kd+1K_{d+1} minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when dd is sufficiently large. In fact we prove a stronger result: for large dd, any graph GG with average degree at least dd contains almost twice as many Hamiltonian subsets as Kd+1K_{d+1}, unless GG is isomorphic to Kd+1K_{d+1} or a certain other graph which we specify.Comment: 33 pages, to appear in Proceedings of the London Mathematical Societ

    Pseudorandom hypergraph matchings

    Full text link
    A celebrated theorem of Pippenger states that any almost regular hypergraph with small codegrees has an almost perfect matching. We show that one can find such an almost perfect matching which is `pseudorandom', meaning that, for instance, the matching contains as many edges from a given set of edges as predicted by a heuristic argument.Comment: 14 page
    corecore